Semantic micro-dynamics as a reflex of occurrence frequency: a semantic networks approach
Abstract: This article correlates fine-grained semantic variability and change with measures of occurrence frequency to investigate whether a word’s degree of semantic change is sensitive to how often it is used. We show that this sensitivity can be detected within a short time span (i.e., 20 years), basing our analysis on a large corpus of German allowing for a high temporal resolution (i.e., per month). We measure semantic variability and change with the help of local semantic networks, combining elements of deep learning methodology and graph theory. Our micro-scale analysis complements previous macro-scale studies from the field of natural language processing, corroborating the finding that high token frequency has a negative effect on the degree of semantic change in a lexical item. We relate this relationship to the role of exemplars for establishing form–function pairings between words and their habitual usage contexts.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Semantic micro-dynamics as a reflex of occurrence frequency: a semantic networks approach ; volume:34 ; number:3-4 ; year:2023 ; pages:533-568 ; extent:036
Cognitive linguistics ; 34, Heft 3-4 (2023), 533-568 (gesamt 036)
- Urheber
- DOI
-
10.1515/cog-2022-0008
- URN
-
urn:nbn:de:101:1-2023110813265666672083
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:45 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Baumann, Andreas
- Hofmann, Klaus
- Marakasova, Anna
- Neidhardt, Julia
- Wissik, Tanja