Semantic micro-dynamics as a reflex of occurrence frequency: a semantic networks approach

Abstract: This article correlates fine-grained semantic variability and change with measures of occurrence frequency to investigate whether a word’s degree of semantic change is sensitive to how often it is used. We show that this sensitivity can be detected within a short time span (i.e., 20 years), basing our analysis on a large corpus of German allowing for a high temporal resolution (i.e., per month). We measure semantic variability and change with the help of local semantic networks, combining elements of deep learning methodology and graph theory. Our micro-scale analysis complements previous macro-scale studies from the field of natural language processing, corroborating the finding that high token frequency has a negative effect on the degree of semantic change in a lexical item. We relate this relationship to the role of exemplars for establishing form–function pairings between words and their habitual usage contexts.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Semantic micro-dynamics as a reflex of occurrence frequency: a semantic networks approach ; volume:34 ; number:3-4 ; year:2023 ; pages:533-568 ; extent:036
Cognitive linguistics ; 34, Heft 3-4 (2023), 533-568 (gesamt 036)

Urheber
Baumann, Andreas
Hofmann, Klaus
Marakasova, Anna
Neidhardt, Julia
Wissik, Tanja

DOI
10.1515/cog-2022-0008
URN
urn:nbn:de:101:1-2023110813265666672083
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:45 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Baumann, Andreas
  • Hofmann, Klaus
  • Marakasova, Anna
  • Neidhardt, Julia
  • Wissik, Tanja

Ähnliche Objekte (12)