Arbeitspapier

Outlier Detection in GARCH Models

We present a new procedure for detecting multiple additive outliers in GARCH(1,1) models at unknown dates. The outlier candidates are the observations with the largest standardized residual. First, a likelihood-ratio based test determines the presence and timing of an outlier. Next, a second test determines the type of additive outlier (volatility or level). The tests are shown to be similar with respect to the GARCH parameters. Their null distribution can be easily approximated from an extreme value distribution, so that computation of p-values does not require simulation. The procedure outperforms alternative methods, especially when it comes to determining the date of the outlier. We apply the method to returns of the Dow Jones index, using monthly, weekly, and daily data. The procedure is extended and applied to GARCH models with Student-t distributed errors.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 05-092/4

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Evaluation, Validation, and Selection
General Financial Markets: General (includes Measurement and Data)
Thema
Dummy variable
Generalized Autoregressive Conditional Heteroskedasticity
GARCH-t
Outlier detection
Extreme value distribution

Ereignis
Geistige Schöpfung
(wer)
Doornik, Jurgen A.
Ooms, Marius
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2005

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Doornik, Jurgen A.
  • Ooms, Marius
  • Tinbergen Institute

Entstanden

  • 2005

Ähnliche Objekte (12)