Arbeitspapier

On cross-validated Lasso

In this paper, we derive a rate of convergence of the Lasso estimator when the penalty parameter Lambda for the estimator is chosen using K-fold cross-validation; in particular, we show that in the model with Gaussian noise and under fairly general assumptions on the candidate set of values of Lambda, the prediction norm of the estimation error of the cross-validated Lasso estimator is with high probability bounded from above up-to a constant by (s log p/n)1/2 . (log7/8 n) as long as p log n/n = o(1) and some other mild regularity conditions are satisfied, where n is the sample size of available data, p is the number of covariates, and s is the number of non-zero coefficients in the model. Thus, the cross-validated Lasso estimator achieves the fastest possible rate of convergence up-to the logarithmic factor log7/8 n. In addition, we derive a sparsity bound for the cross-validated Lasso estimator; in particular, we show that under the same conditions as above, the number of non-zero coefficients of the estimator is with high probability bounded from above up-to a constant by s log5 n. Finally, we show that our proof technique generates non-trivial bounds on the prediction norm of the estimation error of the cross-validated Lasso estimator even if p is much larger than n and the assumption of Gaussian noise fails; in particular, the prediction norm of the estimation error is with high-probability bounded from above up-to a constant by (s log2(pn)/n)1/4 under mild regularity conditions.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP47/16

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Chetverikov, Denis
Liao, Zhipeng
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2016

DOI
doi:10.1920/wp.cem.2016.4716
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chetverikov, Denis
  • Liao, Zhipeng
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2016

Ähnliche Objekte (12)