Arbeitspapier

Identification of structural vector autoregressions through higher unconditional moments

This paper pursues two objectives. First, we determine the sufficient condition for local, statistical identification of SVAR processes through the third and fourth unconditional moments of the reduced-form innovations. Our findings provide novel insights when the entire system is not identified, as they highlight which subset of structural parameters is identified and which is not. Second, we elaborate a tractable testing procedure to verify whether the identification condition holds, prior to the estimation of the structural parameters of the SVAR process. To do so, we design a new bootstrap procedure that improves the small-sample properties of rank tests for the symmetry and kurtosis of the structural shocks.

Sprache
Englisch

Erschienen in
Series: Document de travail ; No. 2020-14

Klassifikation
Wirtschaft
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Thema
Bootstrap procedure
excess kurtosis
identification condition
rank test
skewness
structural vector autoregression

Ereignis
Geistige Schöpfung
(wer)
Guay, Alain
Ereignis
Veröffentlichung
(wer)
Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques
(wo)
Montréal
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Guay, Alain
  • Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques

Entstanden

  • 2020

Ähnliche Objekte (12)