Arbeitspapier
Multidimensional Scaling and Genetic Algorithms : A Solution Approach to Avoid Local Minima
Multidimensional scaling is very common in exploratory data analysis. It is mainly used to represent sets of objects with respect to their proximities in a low dimensional Euclidean space. Widely used optimization algorithms try to improve the representation via shifting its coordinates in direction of the negative gradient of a corresponding fit function. Depending on the initial configuration, the chosen algorithm and its parameter settings there is a possibility for the algorithm to terminate in a local minimum. This article describes the combination of an evolutionary model with a non-metric gradient solution method to avoid this problem. Furthermore a simulation study compares the results of the evolutionary approach with one classic solution method.
- Language
-
Englisch
- Bibliographic citation
-
Series: Arbeitspapiere zur mathematischen Wirtschaftsforschung ; No. 181
- Classification
-
Wirtschaft
- Subject
-
Heuristisches Verfahren
Mathematische Optimierung
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Etschberger, Stefan
Hilbert, Andreas
- Event
-
Veröffentlichung
- (who)
-
Universität Augsburg, Institut für Statistik und Mathematische Wirtschaftstheorie
- (where)
-
Augsburg
- (when)
-
2002
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Etschberger, Stefan
- Hilbert, Andreas
- Universität Augsburg, Institut für Statistik und Mathematische Wirtschaftstheorie
Time of origin
- 2002