Arbeitspapier

Multidimensional Scaling and Genetic Algorithms : A Solution Approach to Avoid Local Minima

Multidimensional scaling is very common in exploratory data analysis. It is mainly used to represent sets of objects with respect to their proximities in a low dimensional Euclidean space. Widely used optimization algorithms try to improve the representation via shifting its coordinates in direction of the negative gradient of a corresponding fit function. Depending on the initial configuration, the chosen algorithm and its parameter settings there is a possibility for the algorithm to terminate in a local minimum. This article describes the combination of an evolutionary model with a non-metric gradient solution method to avoid this problem. Furthermore a simulation study compares the results of the evolutionary approach with one classic solution method.

Language
Englisch

Bibliographic citation
Series: Arbeitspapiere zur mathematischen Wirtschaftsforschung ; No. 181

Classification
Wirtschaft
Subject
Heuristisches Verfahren
Mathematische Optimierung
Theorie

Event
Geistige Schöpfung
(who)
Etschberger, Stefan
Hilbert, Andreas
Event
Veröffentlichung
(who)
Universität Augsburg, Institut für Statistik und Mathematische Wirtschaftstheorie
(where)
Augsburg
(when)
2002

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Etschberger, Stefan
  • Hilbert, Andreas
  • Universität Augsburg, Institut für Statistik und Mathematische Wirtschaftstheorie

Time of origin

  • 2002

Other Objects (12)