Dimensionality reduction of medical image descriptors for multimodal image registration

Abstract: Defining similarity forms a challenging and relevant research topic in multimodal image registration. The frequently used mutual information disregards contextual information, which is shared across modalities. A recent popular approach, called modality independent neigh-bourhood descriptor, is based on local self-similarities of image patches and is therefore able to capture spatial information. This image descriptor generates vectorial representations, i.e. it is multidimensional, which results in a disadvantage in terms of computation time. In this work, we present a problem-adapted solution for dimensionality reduction, by using principal component analysis and Horn’s parallel analysis. Furthermore, the influence of dimensionality reduction in global rigid image registration is investigated. It is shown that the registration results obtained from the reduced descriptor have the same high quality in comparison to those found for the original descriptor.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Dimensionality reduction of medical image descriptors for multimodal image registration ; volume:1 ; number:1 ; year:2015 ; pages:201-205 ; extent:5
Current directions in biomedical engineering ; 1, Heft 1 (2015), 201-205 (gesamt 5)

Urheber
Degen, Johanna
Modersitzki, Jan
Heinrich, Mattias P.

DOI
10.1515/cdbme-2015-0051
URN
urn:nbn:de:101:1-2410141601494.202299629465
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:36 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Degen, Johanna
  • Modersitzki, Jan
  • Heinrich, Mattias P.

Ähnliche Objekte (12)