Artikel
On the proximal point algorithm and its Halpern-type variant for generalized monotone operators in Hilbert space
In a recent paper, Bauschke et al. study ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-comonotonicity as a generalized notion of monotonicity of set-valued operators A in Hilbert space and characterize this condition on A in terms of the averagedness of its resolvent JA.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_A.$$\end{document} In this note we show that this result makes it possible to adapt many proofs of properties of the proximal point algorithm PPA and its strongly convergent Halpern-type variant HPPA to this more general class of operators. This also applies to quantitative results on the rates of convergence or metastability (in the sense of T. Tao). E.g. using this approach we get a simple proof for the convergence of the PPA in the boundedly compact case for ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-comonotone operators and obtain an effective rate of metastability. If A has a modulus of regularity w.r.t. zerA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zer\, A$$\end{document} we also get a rate of convergence to some zero of A even without any compactness assumption. We also study a Halpern-type variant HPPA of the PPA for ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-comonotone operators, prove its strong convergence (without any compactness or regularity assumption) and give a rate of metastability.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Optimization Letters ; ISSN: 1862-4480 ; Volume: 16 ; Year: 2021 ; Issue: 2 ; Pages: 611-621 ; Berlin, Heidelberg: Springer
- Classification
-
Mathematik
- Subject
-
Generalized monotone operators
Proximal point algorithm
Halpern-type proximal point algorithm
Rates of convergence
Metastability
Proof mining
- Event
-
Geistige Schöpfung
- (who)
-
Kohlenbach, Ulrich
- Event
-
Veröffentlichung
- (who)
-
Springer
- (where)
-
Berlin, Heidelberg
- (when)
-
2021
- DOI
-
doi:10.1007/s11590-021-01738-9
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Kohlenbach, Ulrich
- Springer
Time of origin
- 2021