Morozov’s Discrepancy Principle For The Tikhonov Regularization Of Exponentially Ill-Posed Problems

Abstract: The problem of approximate solution of severely ill-posed problems given in the form of linear operator equations of the first kind with approximately known right-hand sides was considered. We have studied a strategy for solving this type of problems, which consists in combinating of Morozov’s discrepancy principle and a finite-dimensional version of the Tikhonov regularization. It is shown that this combination provides an optimal order of accuracy on source sets

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Morozov’s Discrepancy Principle For The Tikhonov Regularization Of Exponentially Ill-Posed Problems ; volume:8 ; number:1 ; year:2008 ; pages:86-98
Computational methods in applied mathematics ; 8, Heft 1 (2008), 86-98

Urheber
SOLODKY, S.G.
MOSENTSOVA, A.

DOI
10.2478/cmam-2008-0006
URN
urn:nbn:de:101:1-2410261633061.773765485904
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:37 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • SOLODKY, S.G.
  • MOSENTSOVA, A.

Ähnliche Objekte (12)