Arbeitspapier
Optimal retirement choice under age-dependent force of mortality
This paper examines the retirement decision, optimal investment, and consumption strategies under an age-dependent force of mortality. We formulate the optimization problem as a combined stochastic control and optimal stopping problem with a random time horizon, featuring three state variables: wealth, labor income, and force of mortality. To address this problem, we transform it into its dual form, which is a finite time horizon, three-dimensional degenerate optimal stopping problem with interconnected dynamics. We establish the existence of an optimal retirement boundary that splits the state space into continuation and stopping regions. Regularity of the optimal stopping value function is derived and the boundary is proved to be Lipschitz continuous, and it is characterized as the unique solution to a nonlinear integral equation, which we compute numerically. In the original coordinates, the agent thus retires whenever her wealth exceeds an age-, labor income- and mortality-dependent transformed version of the optimal stopping boundary. We also provide numerical illustrations of the optimal strategies, including the sensitivities of the optimal retirement boundary concerning the relevant model's parameters.
- Sprache
-
Englisch
- Erschienen in
-
Series: Center for Mathematical Economics Working Papers ; No. 683
- Klassifikation
-
Wirtschaft
Portfolio Choice; Investment Decisions
Macroeconomics: Consumption; Saving; Wealth
Health Insurance, Public and Private
- Thema
-
Optimal retirement time
Optimal consumption
Optimal portfolio choice
Duality
Optimal stopping
Free boundary
Stochastic control
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Ferrari, Giorgio
Zhu, Shihao
- Ereignis
-
Veröffentlichung
- (wer)
-
Bielefeld University, Center for Mathematical Economics (IMW)
- (wo)
-
Bielefeld
- (wann)
-
2023
- Handle
- URN
-
urn:nbn:de:0070-pub-29846217
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Ferrari, Giorgio
- Zhu, Shihao
- Bielefeld University, Center for Mathematical Economics (IMW)
Entstanden
- 2023