Experimental Identification of the Second‐Order Non‐Hermitian Skin Effect with Physics‐Graph‐Informed Machine Learning

Abstract: Topological phases of matter are conventionally characterized by the bulk‐boundary correspondence in Hermitian systems. The topological invariant of the bulk in d dimensions corresponds to the number of (d − 1)‐dimensional boundary states. By extension, higher‐order topological insulators reveal a bulk‐edge‐corner correspondence, such that nth order topological phases feature (d − n)‐dimensional boundary states. The advent of non‐Hermitian topological systems sheds new light on the emergence of the non‐Hermitian skin effect (NHSE) with an extensive number of boundary modes under open boundary conditions. Still, the higher‐order NHSE remains largely unexplored, particularly in the experiment. An unsupervised approach—physics‐graph‐informed machine learning (PGIML)—to enhance the data mining ability of machine learning with limited domain knowledge is introduced. Through PGIML, the second‐order NHSE in a 2D non‐Hermitian topoelectrical circuit is experimentally demonstrated. The admittance spectra of the circuit exhibit an extensive number of corner skin modes and extreme sensitivity of the spectral flow to the boundary conditions. The violation of the conventional bulk‐boundary correspondence in the second‐order NHSE implies that modification of the topological band theory is inevitable in higher dimensional non‐Hermitian systems.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Experimental Identification of the Second‐Order Non‐Hermitian Skin Effect with Physics‐Graph‐Informed Machine Learning ; day:13 ; month:11 ; year:2022 ; extent:8
Advanced science ; (13.11.2022) (gesamt 8)

Urheber
Shang, Ce
Liu, Shuo
Shao, Ruiwen
Han, Peng
Zang, Xiaoning
Zhang, Xiangliang
Salama, Khaled Nabil
Gao, Wenlong
Lee, Ching Hua
Thomale, Ronny
Manchon, Aurélien
Zhang, Shuang
Cui, Tie Jun
Schwingenschlögl, Udo

DOI
10.1002/advs.202202922
URN
urn:nbn:de:101:1-2022111414055572963304
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Shang, Ce
  • Liu, Shuo
  • Shao, Ruiwen
  • Han, Peng
  • Zang, Xiaoning
  • Zhang, Xiangliang
  • Salama, Khaled Nabil
  • Gao, Wenlong
  • Lee, Ching Hua
  • Thomale, Ronny
  • Manchon, Aurélien
  • Zhang, Shuang
  • Cui, Tie Jun
  • Schwingenschlögl, Udo

Ähnliche Objekte (12)