Versatile Microfluidics Separation of Colloids by Combining External Flow with Light‐Induced Chemical Activity

Abstract: Separation of particles by size, morphology, or material identity is of paramount importance in fields such as filtration or bioanalytics. Up to now separation of particles distinguished solely by surface properties or bulk/surface morphology remains a very challenging process. Here a combination of pressure‐driven microfluidic flow and local self‐phoresis/osmosis are proposed via the light‐induced chemical activity of a photoactive azobenzene‐surfactant solution. This process induces a vertical displacement of the sedimented particles, which depends on their size and surface properties.  Consequently, different colloidal components experience different regions of the ambient microfluidic shear flow. Accordingly, a simple, versatile method for the separation of such can be achieved by elution times in a sense of particle chromatography. The concepts are illustrated via experimental studies, complemented by theoretical analysis, which include the separation of bulk‐porous from bulk‐compact colloidal particles and the separation of particles distinguished solely by slight differences in their surface physico‐chemical properties.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Versatile Microfluidics Separation of Colloids by Combining External Flow with Light‐Induced Chemical Activity ; day:29 ; month:04 ; year:2023 ; extent:11
Advanced materials ; (29.04.2023) (gesamt 11)

Creator

DOI
10.1002/adma.202300358
URN
urn:nbn:de:101:1-2023043015042856064087
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:56 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)