A novel active contour model for unsupervised low-key image segmentation

Abstract: Unsupervised image segmentation is greatly useful in many vision-based applications. In this paper, we aim at the unsupervised low-key image segmentation. In low-key images, dark tone dominates the background, and gray level distribution of the foreground is heterogeneous. They widely exist in the areas of space exploration, machine vision, medical imaging, etc. In our algorithm, a novel active contour model with the probability density function of gamma distribution is proposed. The flexible gamma distribution gives a better description for both of the foreground and background in low-key images. Besides, an unsupervised curve initialization method is designed, which helps to accelerate the convergence speed of curve evolution. The experimental results demonstrate the effectiveness of the proposed algorithm through comparison with the CV model. Also, one real-world application based on our approach is described in this paper.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A novel active contour model for unsupervised low-key image segmentation ; volume:3 ; number:2 ; year:2013 ; pages:267-275 ; extent:9
Open engineering ; 3, Heft 2 (2013), 267-275 (gesamt 9)

Urheber
Mei, Jiangyuan
Si, Yulin
Karimi, Hamid
Gao, Huijun

DOI
10.2478/s13531-012-0050-0
URN
urn:nbn:de:101:1-2412141744330.450331290413
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:30 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Mei, Jiangyuan
  • Si, Yulin
  • Karimi, Hamid
  • Gao, Huijun

Ähnliche Objekte (12)