Urysohn and Hammerstein operators on Hölder spaces

Abstract: We present an application-oriented approach to Urysohn and Hammerstein integral operators acting between spaces of Hölder continuous functions over compact metric spaces. These nonlinear mappings are formulated by means of an abstract measure theoretical integral involving a finite measure. This flexible setting creates a common framework to tackle both such operators based on the Lebesgue integral like frequently met in applications, as well as, e.g., their spatial discretization using stable quadrature/cubature rules (Nyström methods). Under suitable Carathéodory conditions on the kernel functions, properties like well-definedness, boundedness, (complete) continuity and continuous differentiability are established. Furthermore, the special case of Hammerstein operators is understood as composition of Fredholm and Nemytskii operators. While our differentiability results for Urysohn operators appear to be new, the section on Nemytskii operators has a survey character. Finally, an appendix provides a rather comprehensive account summarizing the required preliminaries for Hölder continuous functions defined on metric spaces.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Urysohn and Hammerstein operators on Hölder spaces ; volume:42 ; number:4 ; year:2022 ; pages:205-240 ; extent:36
Analysis ; 42, Heft 4 (2022), 205-240 (gesamt 36)

Urheber
Pötzsche, Christian

DOI
10.1515/anly-2021-0052
URN
urn:nbn:de:101:1-2022110413062035052208
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:34 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Pötzsche, Christian

Ähnliche Objekte (12)