Arbeitspapier

Semiparametric multinomial logit models for analysing consumer choice behaviour

The multinomial logit model (MNL) is one of the most frequently used statistical models in marketing applications. It allows to relate an unordered categorical response variable, for example representing the choice of a brand, to a vector of covariates such as the price of the brand or variables characterising the consumer. In its classical form, all covariates enter in strictly parametric, linear form into the utility function of the MNL model. In this paper, we introduce semiparametric extensions, where smooth effects of continuous covariates are modelled by penalised splines. A mixed model representation of these penalised splines is employed to obtain estimates of the corresponding smoothing parameters, leading to a fully automated estimation procedure. To validate semiparametric models against parametric models, we utilise proper scoring rules and compare parametric and semiparametric approaches for a number of brand choice data sets.

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 501

Subject
mixed models
multinomial logit model
brand choice
penalised splines
proper scoring rules
semiparametric regression
Markenartikel
Konsumentenverhalten
Logit-Modell
Nichtparametrisches Verfahren
Konsumtheorie

Event
Geistige Schöpfung
(who)
Kneib, Thomas
Baumgartner, Bernhard
Steiner, Winfried J.
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2006

DOI
doi:10.5282/ubm/epub.1866
Handle
URN
urn:nbn:de:bvb:19-epub-1866-4
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kneib, Thomas
  • Baumgartner, Bernhard
  • Steiner, Winfried J.
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2006

Other Objects (12)