Temporally modulated energy shuffling in highly interconnected nanosystems

Abstract: Advances in lighting and quantum computing will require new degrees of control over the emission of photons, where localized defects and the quantum confinement of carriers can be utilized. In this contribution, recent developments in the controlled redistribution of energy in rare earth (RE)–doped nanosystems, such as quantum dots or within bulk insulating and semiconducting hosts, will be reviewed. In their trivalent form, RE ions are particularly useful dopants because they retain much of their atomic nature regardless of their environment; however, in systems such as GaN and Si, the electronic states of the RE ions couple strongly to those of the host material by forming nanocomplexes. This coupling facilities fast energy transfer (ET) (<100 ps) and a carrier-mediate energy exchange between the host and the various states of the RE ions, which is mediated by the presence of carriers. A model has been developed using a set of rate equations, which takes into consideration the various ET pathways and the lifetimes of each state within the nanocomplex, which can be used to predict the nature of the emitted photons given an excitation condition. This model will be used to elucidate recent experimental observations in Eu-doped GaN.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Temporally modulated energy shuffling in highly interconnected nanosystems ; volume:10 ; number:2 ; year:2020 ; pages:851-876 ; extent:026
Nanophotonics ; 10, Heft 2 (2020), 851-876 (gesamt 026)

Urheber
Mitchell, Brandon
Austin, Hayley
Timmerman, Dolf
Dierolf, Volkmar
Fujiwara, Yasufumi

DOI
10.1515/nanoph-2020-0484
URN
urn:nbn:de:101:1-2022111513353838328498
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Mitchell, Brandon
  • Austin, Hayley
  • Timmerman, Dolf
  • Dierolf, Volkmar
  • Fujiwara, Yasufumi

Ähnliche Objekte (12)