Artikel

Fragility of asymptotic agreement under Bayesian learning

Under the assumption that individuals know the conditional distributions of signals given the payoff-relevant parameters, existing results conclude that as individuals observe infinitely many signals, their beliefs about the parameters will eventually merge. We first show that these results are fragile when individuals are uncertain about the signal distributions: given any such model, vanishingly small individual uncertainty about the signal distributions can lead to substantial (non-vanishing) differences in asymptotic beliefs. Under a uniform convergence assumption, we then characterize the conditions under which a small amount of uncertainty leads to significant asymptotic disagreement.

Sprache
Englisch

Erschienen in
Journal: Theoretical Economics ; ISSN: 1555-7561 ; Volume: 11 ; Year: 2016 ; Issue: 1 ; Pages: 187-225 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Bayesian Analysis: General
Noncooperative Games
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Thema
Asymptotic disagreement
Bayesian learning
merging of opinions

Ereignis
Geistige Schöpfung
(wer)
Yildiz, Muhamet
Acemoglu, Daron
Chernozhukov, Victor
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2016

DOI
doi:10.3982/TE436
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Yildiz, Muhamet
  • Acemoglu, Daron
  • Chernozhukov, Victor
  • The Econometric Society

Entstanden

  • 2016

Ähnliche Objekte (12)