Arbeitspapier

Pricing the multiple-choice nested knapsack problem

The multiple-choice nested knapsack problem (MCKP) is a generalization of the ordinary knapsack problem, where the set of items is partitioned into classes. The binary choice of selecting an item is replaced by taking exactly one item out of each class of items. Due to the fact that the MCKP is an NP-hard integer program dual prices are not readily available. In this paper we propose a family of linear programming models the optimal solution of which is integral for many instances. The models are evaluated experimentally using a well-defined testbed consisting of 9,000 instances. Overall our methodology produces an integral solution for 75% of the instances considered. In particular, for two out of five distribution types studied at least one of the models produces "almost always" an integral solution. Hence, in most of the cases there exists a linear price function that supports the optimal allocation.

Language
Englisch

Bibliographic citation
Series: Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel ; No. 626

Classification
Management
Subject
Knapsack problem
multiple-choice constraints
integer programming
duality
linear programming
pricing
Ganzzahlige Optimierung
Multikriterielle Entscheidungsanalyse
Duales Optimierungsproblem
Preismanagement
Theorie

Event
Geistige Schöpfung
(who)
Drexl, Andreas
Jørnsten, Kurt
Event
Veröffentlichung
(who)
Universität Kiel, Institut für Betriebswirtschaftslehre
ZBW – Leibniz Information Centre for Economics
(where)
Kiel
(when)
2007

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Drexl, Andreas
  • Jørnsten, Kurt
  • Universität Kiel, Institut für Betriebswirtschaftslehre
  • ZBW – Leibniz Information Centre for Economics

Time of origin

  • 2007

Other Objects (12)