Machine Learning Reveals a General Understanding of Printability in Formulations Based on Rheology Additives

Abstract: Hydrogel ink formulations based on rheology additives are becoming increasingly popular as they enable 3‐dimensional (3D) printing of non‐printable but biologically relevant materials. Despite the widespread use, a generalized understanding of how these hydrogel formulations become printable is still missing, mainly due to their variety and diversity. Employing an interpretable machine learning approach allows the authors to explain the process of rendering printability through bulk rheological indices, with no bias toward the composition of formulations and the type of rheology additives. Based on an extensive library of rheological data and printability scores for 180 different formulations, 13 critical rheological measures that describe the printability of hydrogel formulations, are identified. Using advanced statistical methods, it is demonstrated that even though unique criteria to predict printability on a global scale are highly unlikely, the accretive and collaborative nature of rheological measures provides a qualitative and physically interpretable guideline for designing new printable materials.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Machine Learning Reveals a General Understanding of Printability in Formulations Based on Rheology Additives ; day:25 ; month:08 ; year:2022 ; extent:11
Advanced science ; (25.08.2022) (gesamt 11)

Urheber

DOI
10.1002/advs.202202638
URN
urn:nbn:de:101:1-2022082916131794702717
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:24 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)