Arbeitspapier
Spatial Chow-Lin models for completing growth rates in cross-sections
Growth rate data that are collected incompletely in cross-sections is a quite frequent problem. Chow and Lin (1971) have developed a method for predicting unobserved disaggregated time series and we propose an extension of the procedure for completing cross-sectional growth rates similar to the spatial Chow-Lin method of Liano et al. (2009). Disaggregated growth rates cannot be predicted directly and requires a system estimation of two Chow-Lin prediction models, where we compare classical and Bayesian estimation and prediction methods. We demonstrate the procedure for Spanish regional GDP growth rates between 2000 and 2004 at a NUTS-3 level. We evaluate the growth rate forecasts by accuracy criteria, because for the Spanish data-set we can compare the predicted with the observed values.
- Sprache
-
Englisch
- Erschienen in
-
Series: Reihe Ökonomie / Economics Series ; No. 295
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Model Evaluation, Validation, and Selection
General Aggregative Models: Forecasting and Simulation: Models and Applications
Size and Spatial Distributions of Regional Economic Activity
- Thema
-
interpolation
missing disaggregated values in spatial econometrics
MCMC
spatial Chow-Lin methods
predicting growth rates data
spatial autoregression (SAR)
forecast evaluation
outliers
Regionales Wachstum
Räumliche Verteilung
Prognoseverfahren
Spanien
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Polasek, Wolfgang
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute for Advanced Studies (IHS)
- (wo)
-
Vienna
- (wann)
-
2013
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Polasek, Wolfgang
- Institute for Advanced Studies (IHS)
Entstanden
- 2013