Accelerated Multiobjective Calibration of Fused Deposition Modeling 3D Printers Using Multitask Bayesian Optimization and Computer Vision
Proper process parameter calibration is critical to the success of fused deposition modeling (FDM) three‐dimensional (3D) printing, but is time‐consuming and requires expertise. While existing systems for autonomous calibration have demonstrated success in calibrating for a single objective, users may need to balance multiple conflicting objectives. Herein, an easily deployable, camera‐based system for autonomous calibration of FDM printers that optimizes for both part quality and completion time is presented. Autonomous calibration is achieved through a novel, multifaceted computer vision characterization and a multitask learning extension to Bayesian optimization. The system is demonstrated on four popular filament types using two distinct 3D printers. The results show that the system significantly outperforms manufacturer calibration across the machine and material configurations, achieving an average improvement of 32.2% in quality and a 31.2% decrease in completion time with respect to a popular benchmark.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Accelerated Multiobjective Calibration of Fused Deposition Modeling 3D Printers Using Multitask Bayesian Optimization and Computer Vision ; day:05 ; month:02 ; year:2025 ; extent:14
Advanced intelligent systems ; (05.02.2025) (gesamt 14)
- Urheber
- DOI
-
10.1002/aisy.202400523
- URN
-
urn:nbn:de:101:1-2502061306081.186600288703
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:25 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Ganitano, Graig S.
- Maruyama, Benji
- Peterson, Gilbert