Convective-gust nowcasting based on radar reflectivity and a deep learning algorithm

Abstract ∘  × ∘ and a 6 min temporal resolution. CGsNet is shown to be effective, and it has an essential advantage in learning the spatiotemporal features of CGs. In addition, quantitative evaluation experiments indicate that CGsNet exhibits higher generalization performance for CGs than the traditional nowcasting method based on numerical weather prediction models. CG-nowcasting technology can be applied to provide real-time quantitative CG forecasts.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Convective-gust nowcasting based on radar reflectivity and a deep learning algorithm ; volume:16 ; number:12 ; year:2023 ; pages:3611-3628 ; extent:18
Geoscientific model development ; 16, Heft 12 (2023), 3611-3628 (gesamt 18)

Creator
Xiao, Haixia
Wang, Yaqiang
Zheng, Yu
Zheng, Yuanyuan
Zhuang, Xiaoran
Wang, Hongyan
Gao, Mei

DOI
10.5194/gmd-16-3611-2023
URN
urn:nbn:de:101:1-2023070604260358596171
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:02 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Xiao, Haixia
  • Wang, Yaqiang
  • Zheng, Yu
  • Zheng, Yuanyuan
  • Zhuang, Xiaoran
  • Wang, Hongyan
  • Gao, Mei

Other Objects (12)