A two-stage framework for predicting the remaining useful life of bearings

Abstract: The traditional prediction of remaining useful life (RUL) for bearings cannot be calculated in parallel and requires manual feature extraction and artificial label construction. Therefore, this article proposes a two-stage framework for predicting the RUL of bearings. In the first stage, an unsupervised approach using a temporal convolutional network (TCN) is employed to construct a health indicator (HI). This helps reduce human interference and the reliance on expert knowledge. In the second stage, a prediction framework based on a convolutional neural network (CNN)–transformer is developed to address the limitations of traditional neural networks, specifically their inability to perform parallel calculations and their low prediction accuracy. The life prediction framework primarily maps the complete life data of bearings onto the HI vector. Based on the HI constructed through TCN, the known HI is input into the CNN–transformer network, which sequentially predicts the remaining unknown HI. Finally, the effectiveness and superiority of the proposed method are verified using two bearing datasets, providing validation of its capabilities.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A two-stage framework for predicting the remaining useful life of bearings ; volume:22 ; number:1 ; year:2024 ; extent:11
Open physics ; 22, Heft 1 (2024) (gesamt 11)

Urheber
Zhan, Xianbiao
Liu, Zixuan
Yan, Hao
Wu, Zhenghao
Guo, Chiming
Jia, Xisheng

DOI
10.1515/phys-2023-0187
URN
urn:nbn:de:101:1-2024041015570677407532
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:53 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Zhan, Xianbiao
  • Liu, Zixuan
  • Yan, Hao
  • Wu, Zhenghao
  • Guo, Chiming
  • Jia, Xisheng

Ähnliche Objekte (12)