Arbeitspapier
A flexible semiparametric model for time series
We consider approximating a multivariate regression function by an affine combination of one-dimensional conditional component regression functions. The weight parameters involved in the approximation are estimated by least squares on the first-stage nonparametric kernel estimates. We establish asymptotic normality for the estimated weights and the regression function in two cases: the number of the covariates is finite, and the number of the covariates is diverging. As the observations are assumed to be stationary and near epoch dependent, the approach in this paper is applicable to estimation and forecasting issues in time series analysis. Furthermore, the methods and results are augmented by a simulation study and illustrated by application in the analysis of the Australian annual mean temperature anomaly series. We also apply our methods to high frequency volatility forecasting, where we obtain superior results to parametric methods.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP28/12
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- Thema
-
asymptotic normality
model averaging
Nadaraya-Watson kernel estimation
near epoch dependence
semiparametric method
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Li, Degui
Linton, Oliver
Lu, Zudi
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2012
- DOI
-
doi:10.1920/wp.cem.2012.2812
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:22 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Li, Degui
- Linton, Oliver
- Lu, Zudi
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2012