A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients

Location
Deutsche Nationalbibliothek Frankfurt am Main
ISSN
1432-0711
Extent
Online-Ressource
Language
Englisch
Notes
online resource.

Bibliographic citation
A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients ; day:9 ; month:5 ; year:2022 ; pages:1-12
Archives of gynecology and obstetrics ; (9.5.2022), 1-12

Creator
Arezzo, Francesca
Cormio, Gennaro
Forgia, Daniele La
Santarsiero, Carla Mariaflavia
Mongelli, Michele
Lombardi, Claudio
Cazzato, Gerardo
Cicinelli, Ettore
Loizzi, Vera
Contributor
SpringerLink (Online service)

DOI
10.1007/s00404-022-06578-1
URN
urn:nbn:de:101:1-2022071606145247314300
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:22 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Arezzo, Francesca
  • Cormio, Gennaro
  • Forgia, Daniele La
  • Santarsiero, Carla Mariaflavia
  • Mongelli, Michele
  • Lombardi, Claudio
  • Cazzato, Gerardo
  • Cicinelli, Ettore
  • Loizzi, Vera
  • SpringerLink (Online service)

Other Objects (12)