Purely Elastic Fluid–Structure Interactions in Microfluidics: Implications for Mucociliary Flows

Abstract: Fluid–structure interactions lie at the heart of the complex, and often highly coordinated, motions of actively driven microscale biological systems (e.g., translating cilia, flagella, and motile cells). Due to the highly viscoelastic nature of most relevant biological fluids and the small length scales involved, the viscous and inertial forces in such flows are dominated by elasticity. However, elastic effects are often overlooked in studies seeking to address phenomena like the synchronization of beating cilia. In this study, unique microfluidic experiments are presented to demonstrate that inertia‐free viscoelastic flows can lead to highly regular beating of an immersed (passive) flexible structure, herein named “purely‐elastic” fluid–structure interaction. It is also shown how two such flexible structures can achieve an extraordinary degree of synchronization, with a correlation coefficient approaching unity. The synchronization is a result of the generation of localized elastic stresses in the fluid that effectively link the two objects. These purely elastic interactions may be important to consider toward developing a complete understanding of the motions of microscale biological systems.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Purely Elastic Fluid–Structure Interactions in Microfluidics: Implications for Mucociliary Flows ; volume:16 ; number:9 ; year:2020 ; extent:13
Small ; 16, Heft 9 (2020) (gesamt 13)

Urheber
Hopkins, Cameron C.
Haward, Simon J.
Shen, Amy Q.

DOI
10.1002/smll.201903872
URN
urn:nbn:de:101:1-2022060311591066353204
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:38 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Hopkins, Cameron C.
  • Haward, Simon J.
  • Shen, Amy Q.

Ähnliche Objekte (12)