Artikel

Deep hedging under rough volatility

We investigate the performance of the Deep Hedging framework under training paths beyond the (finite dimensional) Markovian setup. In particular, we analyse the hedging performance of the original architecture under rough volatility models in view of existing theoretical results for those. Furthermore, we suggest parsimonious but suitable network architectures capable of capturing the non-Markoviantity of time-series. We also analyse the hedging behaviour in these models in terms of Profit and Loss (P&L) distributions and draw comparisons to jump diffusion models if the rebalancing frequency is realistically small.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 9 ; Year: 2021 ; Issue: 7 ; Pages: 1-20 ; Basel: MDPI

Classification
Wirtschaft
Subject
deep learning
rough volatility
hedging

Event
Geistige Schöpfung
(who)
Horvath, Blanka Nora
Teichmann, Josef
Žuric̆, Žan
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/risks9070138
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Horvath, Blanka Nora
  • Teichmann, Josef
  • Žuric̆, Žan
  • MDPI

Time of origin

  • 2021

Other Objects (12)