Artikel

A new adaptive exponential smoothing method for non-stationary time series with level shifts

Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting process. This paper generalizes the SES method into a new adaptive method called revised simple exponential smoothing (RSES), as an alternative method to recognize non-stationary level shifts in the time series. We show that the new method improves the accuracy of the forecasting process. This is done by controlling the number of observations and the smoothing parameter in an adaptive approach, and in accordance with the laws of statistical control limits and the Bayes rule of conditioning. We use a numerical example to show how the new RSES method outperforms its traditional counterpart, SES.

Sprache
Englisch

Erschienen in
Journal: Journal of Industrial Engineering International ; ISSN: 2251-712X ; Volume: 10 ; Year: 2014 ; Pages: 209-216 ; Heidelberg: Springer

Klassifikation
Management
Thema
Time series analysis
Adaptive exponential smoothing
Level shifts
Statistical control limits

Ereignis
Geistige Schöpfung
(wer)
Monfared, Mohammad Ali Saniee
Ghandali, Razieh
Esmaeili, Maryam
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2014

DOI
doi:10.1007/s40092-014-0075-5
Handle
Letzte Aktualisierung
20.09.2024, 08:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Monfared, Mohammad Ali Saniee
  • Ghandali, Razieh
  • Esmaeili, Maryam
  • Springer

Entstanden

  • 2014

Ähnliche Objekte (12)