Artikel
A new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting process. This paper generalizes the SES method into a new adaptive method called revised simple exponential smoothing (RSES), as an alternative method to recognize non-stationary level shifts in the time series. We show that the new method improves the accuracy of the forecasting process. This is done by controlling the number of observations and the smoothing parameter in an adaptive approach, and in accordance with the laws of statistical control limits and the Bayes rule of conditioning. We use a numerical example to show how the new RSES method outperforms its traditional counterpart, SES.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Journal of Industrial Engineering International ; ISSN: 2251-712X ; Volume: 10 ; Year: 2014 ; Pages: 209-216 ; Heidelberg: Springer
- Klassifikation
-
Management
- Thema
-
Time series analysis
Adaptive exponential smoothing
Level shifts
Statistical control limits
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Monfared, Mohammad Ali Saniee
Ghandali, Razieh
Esmaeili, Maryam
- Ereignis
-
Veröffentlichung
- (wer)
-
Springer
- (wo)
-
Heidelberg
- (wann)
-
2014
- DOI
-
doi:10.1007/s40092-014-0075-5
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:21 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Monfared, Mohammad Ali Saniee
- Ghandali, Razieh
- Esmaeili, Maryam
- Springer
Entstanden
- 2014