Arbeitspapier

Almost unbiased variance estimation in simultaneous equation models

While a good deal of research in simultaneous equation models has been conducted to examine the small sample properties of coefficient estimators there has not been a corresponding interest in the properties of estimators for the associated variances. In this paper we build on Kiviet and Phillips (2000) and explore the biases in variance estimators. This is done for the 2SLS and the MLIML estimators.The approximations to the bias are then used to develop less biased estimators whose properties are examined and compared in a number of simulation experiments. In addition, a bootstrap estimator is included which is found to perform especially well. The experiments also consider coverage probabilities/test sizes and test powers of the t-tests where it is shown that tests based on 2SLS are generally oversized while test sizes based on MLIML are closer to nominal levels. In both cases test statistics based on the corrected variance estimates generally have a higher power than standard procedures.

Sprache
Englisch

Erschienen in
Series: Cardiff Economics Working Papers ; No. E2016/10

Klassifikation
Wirtschaft
Hypothesis Testing: General
Estimation: General
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Multiple or Simultaneous Equation Models; Multiple Variables: General
Thema
Simultaneous equation models
2SLS and Fuller's estimators
Bias corrected variance estimation
Inference and bias corrected variance

Ereignis
Geistige Schöpfung
(wer)
Phillips, Garry D. A.
Xu, Yongdeng
Ereignis
Veröffentlichung
(wer)
Cardiff University, Cardiff Business School
(wo)
Cardiff
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Phillips, Garry D. A.
  • Xu, Yongdeng
  • Cardiff University, Cardiff Business School

Entstanden

  • 2016

Ähnliche Objekte (12)