A data generation approach for surrogate models for magneto‐static simulations
Abstract: In this paper, we propose an efficient numerical scheme for the prediction of the magnetic stray fields in two‐dimensional random microheterogeneous materials. Since data‐driven models require thousands of training datasets, Finite Element Method simulations appear to be too time consuming. Therefore, a stochastic model based on Brownian motion, which uses an efficient evaluation of stochastic transition matrices, is used as a Poisson solver to generate training data.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
A data generation approach for surrogate models for magneto‐static simulations ; day:13 ; month:09 ; year:2023 ; extent:8
Proceedings in applied mathematics and mechanics ; (13.09.2023) (gesamt 8)
- Creator
- DOI
-
10.1002/pamm.202300119
- URN
-
urn:nbn:de:101:1-2023091316033162005052
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:46 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Niekamp, Rainer
- Niemann, Johanna
- Reichel, Maximilian
- Schröder, Jörg