Handling complete short-term data logging failure in smart buildings: Machine learning based forecasting pipelines with sliding-window training scheme

Abstract: This paper implements a machine learning(ML)-based procedure for constructing the missing sensor(s) data in a net zero energy building in case of complete failure in data recording (for up to one hour). In the first scenario, missing temperature data is re-created using the sensor's ex-ante data, the HVAC system's status flag, and the ambient conditions. In the second scenario, the temperature data (until failure occurred) from two close-by spaces are also utilized as inputs. For each scenario, ML-based pipelines' performance is first assessed by considering different prediction horizons using a benchmark algorithm. Next, each pipeline's most promising features and the most suitable algorithm are identified. Using the obtained optimal pipeline, a sliding window-based training scheme is implemented, and the size of the training window is optimized. It is shown that feature selection, algorithm optimization procedures, and the sliding window-based training scheme notably improve the forecasting performance. The proposed methodology can be deployed as a tool in intervals with total data logging failure, providing data to ML-based controllers in smart buildings and avoiding disruptions in the building management system

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Energy and buildings. - 301 (2023) , 113694, ISSN: 0378-7788

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023
Urheber
Papadopoulos, Dimitrios
Dadras Javan, Farzad
Najafi, Behzad
Haghighat Mamaghani, Alireza
Rinaldi, Fabio

DOI
10.1016/j.enbuild.2023.113694
URN
urn:nbn:de:bsz:25-freidok-2408509
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:35 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Papadopoulos, Dimitrios
  • Dadras Javan, Farzad
  • Najafi, Behzad
  • Haghighat Mamaghani, Alireza
  • Rinaldi, Fabio
  • Universität

Entstanden

  • 2023

Ähnliche Objekte (12)