Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems
Abstract: In this paper, we study the problem of finding a common solution of the pseudomonotone variational inequality problem and fixed point problem for demicontractive mappings. We introduce a new inertial iterative scheme that combines Tseng’s extragradient method with the viscosity method together with the adaptive step size technique for finding a common solution of the investigated problem. We prove a strong convergence result for our proposed algorithm under mild conditions and without prior knowledge of the Lipschitz constant of the pseudomonotone operator in Hilbert spaces. Finally, we present some numerical experiments to show the efficiency of our method in comparison with some of the existing methods in the literature.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems ; volume:20 ; number:1 ; year:2022 ; pages:234-257 ; extent:24
Open mathematics ; 20, Heft 1 (2022), 234-257 (gesamt 24)
- Creator
- DOI
-
10.1515/math-2022-0030
- URN
-
urn:nbn:de:101:1-2022072814053849971363
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:28 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Uzor, Victor Amarachi
- Alakoya, Timilehin Opeyemi
- Mewomo, Oluwatosin