Physics‐Informed Neural Networks to Model and Control Robots: A Theoretical and Experimental Investigation

This work concerns the application of physics‐informed neural networks to the modeling and control of complex robotic systems. Achieving this goal requires extending physics‐informed neural networks to handle nonconservative effects. These learned models are proposed to combine with model‐based controllers originally developed with first‐principle models in mind. By combining standard and new techniques, precise control performance can be achieved while proving theoretical stability bounds. These validations include real‐world experiments of motion prediction with a soft robot and trajectory tracking with a Franka Emika Panda manipulator.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Physics‐Informed Neural Networks to Model and Control Robots: A Theoretical and Experimental Investigation ; day:23 ; month:02 ; year:2024 ; extent:17
Advanced intelligent systems ; (23.02.2024) (gesamt 17)

Urheber
Liu, Jingyue
Borja, Pablo
Della Santina, Cosimo

DOI
10.1002/aisy.202300385
URN
urn:nbn:de:101:1-2024022414040623457423
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:59 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Liu, Jingyue
  • Borja, Pablo
  • Della Santina, Cosimo

Ähnliche Objekte (12)