Artikel
Generalized backward induction: Justification for a folk algorithm
I introduce axiomatically infinite sequential games that extend Kuhn's classical framework. Infinite games allow for (a) imperfect information, (b) an infinite horizon, and (c) infinite action sets. A generalized backward induction (GBI) procedure is defined for all such games over the roots of subgames. A strategy profile that survives backward pruning is called a backward induction solution (BIS). The main result of this paper finds that, similar to finite games of perfect information, the sets of BIS and subgame perfect equilibria (SPE) coincide for both pure strategies and for behavioral strategies that satisfy the conditions of finite support and finite crossing. Additionally, I discuss five examples of well-known games and political economy models that can be solved with GBI but not classic backward induction (BI). The contributions of this paper include (a) the axiomatization of a class of infinite games, (b) the extension of backward induction to infinite games, and (c) the proof that BIS and SPEs are identical for infinite games.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Games ; ISSN: 2073-4336 ; Volume: 10 ; Year: 2019 ; Issue: 3 ; Pages: 1-25 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
Stochastic and Dynamic Games; Evolutionary Games; Repeated Games
- Thema
-
subgame perfect equilibrium
backward induction
refinement
axiomatic game theory
agenda setter
imperfect information
political economy
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Kaminski, Marek
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2019
- DOI
-
doi:10.3390/g10030034
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Kaminski, Marek
- MDPI
Entstanden
- 2019