Arbeitspapier
Inhomogeneous dependency modelling with time varying copulae
Measuring dependence in a multivariate time series is tantamount to modelling its dynamic structure in space and time. In the context of a multivariate normally distributed time series, the evolution of the covariance (or correlation) matrix over time describes this dynamic. A wide variety of applications, though, requires a modelling framework different from the multivariate normal. In risk management the non-normal behaviour of most financial time series calls for nonlinear (i.e. non-gaussian) dependency. The correct modelling of non-gaussian dependencies is therefore a key issue in the analysis of multivariate time series. In this paper we use copulae functions with adaptively estimated time varying parameters for modelling the distribution of returns, free from the usual normality assumptions. Further, we apply copulae to estimation of Value-at-Risk (VaR) of a portfolio and show its better performance over the RiskMetrics approach, a widely used methodology for VaR estimation.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2006-075
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
- Subject
-
Value-at-Risk
time varying copula
adaptive estimation
nonparametric estimation
- Event
-
Geistige Schöpfung
- (who)
-
Giacomini, Enzo
Härdle, Wolfgang Karl
Ignatieva, Ekaterina
Spokoiny, Vladimir
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2006
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Giacomini, Enzo
- Härdle, Wolfgang Karl
- Ignatieva, Ekaterina
- Spokoiny, Vladimir
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2006