Inland lake temperature initialization via coupled cycling with atmospheric data assimilation
Abstract Application of lake models coupled within earth-system prediction models, especially for predictions from days to weeks, requires accurate initialization of lake temperatures. Commonly used methods to initialize lake temperatures include interpolation of global sea-surface temperature (SST) analyses to inland lakes, daily satellite-based observations, or model-based reanalyses. However, each of these methods have limitations in capturing the temporal characteristics of lake temperatures (e.g., effects of anomalously warm or cold weather) for all lakes within a geographic region and/or during extended cloudy periods. An alternative lake-initialization method was developed which uses two-way-coupled cycling of a small-lake model within an hourly data assimilation system of a weather prediction model. The lake model simulated lake temperatures were compared with other estimates from satellite and in situ observations and interpolated-SST data for a multi-month period in 2021. The lake cycling initialization, now applied to two operational US NOAA weather models, was found to decrease errors in lake surface temperature from as much as 5–10 K vs. interpolated-SST data to about 1–2 K compared to available in situ and satellite observations.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Inland lake temperature initialization via coupled cycling with atmospheric data assimilation ; volume:15 ; number:17 ; year:2022 ; pages:6659-6676 ; extent:18
Geoscientific model development ; 15, Heft 17 (2022), 6659-6676 (gesamt 18)
- Urheber
-
Benjamin, Stanley G.
Smirnova, Tatiana G.
James, Eric P.
Anderson, Eric J.
Fujisaki-Manome, Ayumi
Kelley, John G. W.
Mann, Greg E.
Gronewold, Andrew D.
Chu, Philip
Kelley, Sean G. T.
- DOI
-
10.5194/gmd-15-6659-2022
- URN
-
urn:nbn:de:101:1-2022090805203522807311
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:23 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Benjamin, Stanley G.
- Smirnova, Tatiana G.
- James, Eric P.
- Anderson, Eric J.
- Fujisaki-Manome, Ayumi
- Kelley, John G. W.
- Mann, Greg E.
- Gronewold, Andrew D.
- Chu, Philip
- Kelley, Sean G. T.