Artikel

EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: An application to insurance ratemaking

This article presents the Poisson-Inverse Gamma regression model with varying dispersion for approximating heavy-tailed and overdispersed claim counts. Our main contribution is that we develop an Expectation-Maximization (EM) type algorithm for maximum likelihood (ML) estimation of the Poisson-Inverse Gamma regression model with varying dispersion. The empirical analysis examines a portfolio of motor insurance data in order to investigate the efficiency of the proposed algorithm. Finally, both the a priori and a posteriori, or Bonus-Malus, premium rates that are determined by the Poisson-Inverse Gamma model are compared to those that result from the classic Negative Binomial Type I and the Poisson-Inverse Gaussian distributions with regression structures for their mean and dispersion parameters.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 3 ; Pages: 1-23 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
poisson-inverse gamma distribution
em algorithm
regression models for mean and dispersion parameters
motor third party liability insurance
ratemaking

Ereignis
Geistige Schöpfung
(wer)
Tzougas, George
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/risks8030097
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Tzougas, George
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)