Arbeitspapier

Analysis of binary trading patterns in Xetra

This paper proposes the Shannon entropy as an appropriate one-dimensional measure of behavioural trading patterns in financial markets. The concept is applied to the illustrative example of algorithmic vs. non-algorithmic trading and empirical data from Deutsche Börse's electronic cash equity trading system, Xetra. The results reveal pronounced differences between algorithmic and non-algorithmic traders. In particular, trading patterns of algorithmic traders exhibit a medium degree of regularity while non-algorithmic trading tends towards either very regular or very irregular trading patterns.

Language
Englisch

Bibliographic citation
Series: CFS Working Paper ; No. 2010/12

Classification
Wirtschaft
Econometric and Statistical Methods: Special Topics: General
Information and Market Efficiency; Event Studies; Insider Trading
International Financial Markets
Financial Institutions and Services: General
Subject
Financial Markets
Electronic Markets
Algorithmic Trading
Order Entry
Equity Trading
Information Theory
Entropy Measure
Wertpapierhandel
Anlageverhalten
Informationsverbreitung
Entropie
Aktienmarkt
Elektronisches Handelssystem
Schätzung
Deutschland

Event
Geistige Schöpfung
(who)
Maurer, Kai-Oliver
Schäfer, Carsten
Event
Veröffentlichung
(who)
Goethe University Frankfurt, Center for Financial Studies (CFS)
(where)
Frankfurt a. M.
(when)
2010

Handle
URN
urn:nbn:de:hebis:30-78648
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Maurer, Kai-Oliver
  • Schäfer, Carsten
  • Goethe University Frankfurt, Center for Financial Studies (CFS)

Time of origin

  • 2010

Other Objects (12)