SCALING-UP DEEP LEARNING PREDICTIONS OF HYDROGRAPHY FROM IFSAR DATA IN ALASKA

Abstract. The United States National Hydrography Dataset (NHD) is a database of vector features representing the surface water features for the country. The NHD was originally compiled from hydrographic content on U.S. Geological Survey topographic maps but is being updated with higher quality feature representations through flow-routing techniques that derive hydrography from high-resolution elevation data. However, deriving hydrography through flow-routing methods is a complex process that needs to be tailored to different geographic conditions, which can lead to varying solutions. To address this problem, this paper evaluates automated deep learning and its transferability to extract hydrography from interferometric synthetic aperture radar (IfSAR) elevation data spanning a range of geographic conditions in Alaska.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
SCALING-UP DEEP LEARNING PREDICTIONS OF HYDROGRAPHY FROM IFSAR DATA IN ALASKA ; volume:XLVIII-4/W1-2022 ; year:2022 ; pages:449-456 ; extent:8
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-4/W1-2022 (2022), 449-456 (gesamt 8)

Creator
Stanislawski, L. V.
Shavers, E. J.
Duffy, A. J.
Thiem, P.
Jaroenchai, N.
Wang, S.
Jiang, Z.
Kronenfeld, B. J.
Buttenfield, B. P.

DOI
10.5194/isprs-archives-XLVIII-4-W1-2022-449-2022
URN
urn:nbn:de:101:1-2022081105195787774757
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Stanislawski, L. V.
  • Shavers, E. J.
  • Duffy, A. J.
  • Thiem, P.
  • Jaroenchai, N.
  • Wang, S.
  • Jiang, Z.
  • Kronenfeld, B. J.
  • Buttenfield, B. P.

Other Objects (12)