Einfluss von permissiver Hyperkapnie auf den Gasaustausch, die Lungenschädigung und die Hämodynamik am Versuchstier mit schwerem „Acute Respiratory Distress Syndrome (ARDS)“

Dissertation
zur Erlangung des Doktorgrades der Medizin
der Medizinischen Fakultät
der Universität Ulm

vorgelegt von
Marc Robin Mendler
aus Berlin

Ulm 2013
Amtierender Dekan: Prof. Dr. Thomas Wirth

1. Berichterstatter: Prof. Dr. Helmut Hummler
2. Berichterstatter: Prof. Dr. Enrico Calzia

Tag der Promotion: 16.01.2014
Meiner Familie
Abkürzungsverzeichnis ... VI

1. Einleitung ... 1

2. Material und Methoden ... 12
 2.1. Versuchstiere .. 12
 2.2. Vorbereitung des Versuches ... 12
 2.2.1. Ablauf / Intubation .. 12
 2.2.2. Narkose ... 13
 2.2.3. RespiratorenEinheit / Beatmungsregime / Atemwegsdruck 13
 2.2.4. Erhaltungsinfusion ... 14
 2.2.5. Anlage der zentralen Zugänge / Messung des zentralen
 Venendrucks, des arteriellen Blutdrucks und
 Bestimmung des Herzzeitvolumens .. 15
 2.2.6. EKG / Ösophagusdruck ... 17
 2.2.7. Trepanation, Sondenanlage, Messung der intrazerebralen
 Perfusion und des intrazerebralen Drucks 17
 2.2.8. Blutgasanalysen .. 19
 2.2.9. Blutentnahmen ... 19
 2.2.10. Datenaufzeichnung .. 20
 2.3. „Baseline vor BAL“ ... 22
 2.4. Bronchoalveoläre Lavage (initial) ... 22
 2.5. „Baseline nach BAL“ ... 24
 2.6. 6 h-Messintervall ... 25
 2.6.1. Ablauf ... 25
 2.6.2. Unterstützung der Hämodynamik 27
 2.6.3. Kompensation der Azidose .. 27
 2.7. Obduktion .. 27
 2.7.1. Ablauf .. 27
 2.7.2. Bronchoalveoläre Lavage (terminal) 29
 2.8. Untersuchung der Lungen ... 30
 2.8.1. Quotient Feucht- / Trockengewicht 30
 2.8.2. Makroskopische Beurteilung ... 30
 2.8.3. Mikroskopische Beurteilung .. 31
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Teil</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td>Statistik / Berechnungen</td>
<td>32</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Berechnung der Lungencompliance</td>
<td>32</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Berechnung von Sauerstoffangebot / Sauerstoff-Differenz</td>
<td>32</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Fallzahlberechnung</td>
<td>33</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Statistische Bewertung der Ergebnisse</td>
<td>33</td>
</tr>
<tr>
<td>2.9.5</td>
<td>Zielkriterien</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Ergebnisse</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Mortalität</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Körpergewicht</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>„Baseline“-Werte</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Quotient Feucht- / Trockengewicht</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Lungengewebe</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Bronchoalveoläre Lavage</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Blutgasanalysen</td>
<td>49</td>
</tr>
<tr>
<td>3.8</td>
<td>Sauerstoffstatus</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>Elektrolyte</td>
<td>62</td>
</tr>
<tr>
<td>3.10</td>
<td>Metabolische Parameter</td>
<td>68</td>
</tr>
<tr>
<td>3.11</td>
<td>Proteinbestimmung</td>
<td>72</td>
</tr>
<tr>
<td>3.12</td>
<td>Hämodynamische Parameter</td>
<td>73</td>
</tr>
<tr>
<td>3.13</td>
<td>Atmungsmechanik</td>
<td>81</td>
</tr>
<tr>
<td>3.14</td>
<td>Intrazerebrale Perfusion / Intrakranieller Druck</td>
<td>86</td>
</tr>
<tr>
<td>3.15</td>
<td>Blutproben</td>
<td>88</td>
</tr>
<tr>
<td>3.16</td>
<td>Unterstützung Hämodynamik / Kompensation der Azidose</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>Diskussion</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>Gründe für die Anwendung dieses Tiermodells</td>
<td>101</td>
</tr>
<tr>
<td>4.2</td>
<td>Diskussion der Messwerte</td>
<td>102</td>
</tr>
<tr>
<td>4.3</td>
<td>Schlussfolgerung</td>
<td>124</td>
</tr>
<tr>
<td>5</td>
<td>Zusammenfassung</td>
<td>126</td>
</tr>
<tr>
<td>6</td>
<td>Literaturverzeichnis</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>Anhang</td>
<td>139</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Δ</td>
<td>Delta (Differenz)</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
<td></td>
</tr>
<tr>
<td>μg</td>
<td>Mikrogramm</td>
<td></td>
</tr>
<tr>
<td>μl</td>
<td>Mikroliter</td>
<td></td>
</tr>
<tr>
<td>ARDS</td>
<td>acute respiratory distress syndrome</td>
<td></td>
</tr>
<tr>
<td>avDO$_2$</td>
<td>arterio-venöse Sauerstoff-Differenz</td>
<td></td>
</tr>
<tr>
<td>BAL</td>
<td>bronchoalveoläre Lavage</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>base excess / Blutentnahme</td>
<td></td>
</tr>
<tr>
<td>BGA</td>
<td>Blutgasanalyse</td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>BPU</td>
<td>Blood Perfusion Units</td>
<td></td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclices Adenosinmonophosphat</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Charrière</td>
<td></td>
</tr>
<tr>
<td>C_i</td>
<td>inspiratorische Compliance</td>
<td></td>
</tr>
<tr>
<td>cmH$_2$O</td>
<td>Zentimeter Wassersäule</td>
<td></td>
</tr>
<tr>
<td>CPAP</td>
<td>continuous positive airway pressure</td>
<td></td>
</tr>
<tr>
<td>dl</td>
<td>Deziliter</td>
<td></td>
</tr>
<tr>
<td>DO$_2$</td>
<td>Sauerstoffangebot</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamintetraacetat</td>
<td></td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Frequenz</td>
<td></td>
</tr>
<tr>
<td>FiO$_2$</td>
<td>fraktionelle Sauerstoffkonzentration der Inspirationsluft</td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>French</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Gauge</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
<td></td>
</tr>
<tr>
<td>H$^+$</td>
<td>Wasserstoff-Ionen</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>Herzfrequenz</td>
<td></td>
</tr>
<tr>
<td>HFOV</td>
<td>high frequency oscillation ventilation</td>
<td></td>
</tr>
<tr>
<td>Hk</td>
<td>Hämatozirk</td>
<td></td>
</tr>
<tr>
<td>HZV</td>
<td>Herzzeitvolumen</td>
<td></td>
</tr>
<tr>
<td>ICD10</td>
<td>international classification of diseases, version 10</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Innendurchmesser</td>
<td></td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>IE</td>
<td>Internationale Einheit</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
<td></td>
</tr>
<tr>
<td>L:D</td>
<td>Licht- / Dunkelverhältnis</td>
<td></td>
</tr>
<tr>
<td>MAD</td>
<td>mittlerer arterieller Blutdruck</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
<td></td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
<td></td>
</tr>
<tr>
<td>mmHG</td>
<td>Millimeter Quecksilbersäule</td>
<td></td>
</tr>
<tr>
<td>mmol</td>
<td>Millimol</td>
<td></td>
</tr>
<tr>
<td>N$_2$</td>
<td>Stickstoff</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>Natrium-Chlorid</td>
<td></td>
</tr>
<tr>
<td>NaHCO$_3$</td>
<td>Natriumhydrogencarbonat</td>
<td></td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor 'kappa-light-chain-enhancer' of activated B-cells</td>
<td></td>
</tr>
<tr>
<td>paCO$_2$</td>
<td>arterieller Kohlenstoffdioxidpartialdruck</td>
<td></td>
</tr>
<tr>
<td>paO$_2$</td>
<td>arterieller Sauerstoffpartialdruck</td>
<td></td>
</tr>
<tr>
<td>Paw</td>
<td>Atemwegsdruck</td>
<td></td>
</tr>
<tr>
<td>PAWP</td>
<td>pulmonary artery wedge pressure</td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>Barometerdruck</td>
<td></td>
</tr>
<tr>
<td>Pe</td>
<td>Ösophagusdruck</td>
<td></td>
</tr>
<tr>
<td>PEEP</td>
<td>positive end-expiratory pressure</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>potentia Hydrogenii</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
<td></td>
</tr>
<tr>
<td>RDS</td>
<td>respiratory distress syndrome</td>
<td></td>
</tr>
<tr>
<td>RQ</td>
<td>Respiratorischer Quotient</td>
<td></td>
</tr>
<tr>
<td>SaO$_2$</td>
<td>arterielle Sauerstoffsättigung</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
<td></td>
</tr>
<tr>
<td>SpO$_2$</td>
<td>transkutan bestimmte arterielle Sauerstoffsättigung</td>
<td></td>
</tr>
<tr>
<td>SSW</td>
<td>Schwangerschaftswoche</td>
<td></td>
</tr>
<tr>
<td>TIVA</td>
<td>total intravenöse Anästhesie</td>
<td></td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumornekrosefaktor-alpha</td>
<td></td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Umdrehungen</td>
<td></td>
</tr>
<tr>
<td>V$_1$</td>
<td>Tidalvolumen</td>
<td></td>
</tr>
<tr>
<td>ZVD</td>
<td>zentraler Venendruck</td>
<td></td>
</tr>
</tbody>
</table>
Kapitel 1

1. Einleitung

- akuter Beginn
- Horowitz-Oxygenierungsindex: \(paO_2/FiO_2 \leq 200 \text{ mmHg} \) unabhängig von einem vorhandenen PEEP-Niveau
- Bilateral vorhandene Infiltrate in der anterior-posterior durchgeführten Röntgenaufnahme des Thorax
- Pulmonalarteriöser Verschlussdruck (PAWP, Wedge-Druck) < 18 mmHg oder fehlender klinischer Anhalt für eine vorhandene Linksherzinsuffizienz“
Bei einem Oxygenierungsindex zwischen 200 und 300 mmHg und ansonsten identischen Kriterien würde es sich laut Definition um ein „ALI (acute lung injury)“ handeln. Im Jahr 2011 wurde diese Definition erneut durch eine Amerikanisch-Europäische Konsensus-Konferenz (European Society of Intensive Care Medicine, American Thoracic Society, Society of Critical Care Medicine) der nun erweiterten Datenlage angepasst, um hierdurch eine bessere Identifizierung möglicher Krankheitsfälle, eine optimierte Therapie, sowie eine verbesserte Prognoseabschätzung vornehmen zu können (siehe Abbildung 1). Dabei wurde der PEEP mit in die Definition aufgenommen.

Abbildung 1: Definition des ARDS der ARDS Definition Task Force. (ARDS Definition Task Force et al., 2012, S. 2530)

Epidemiologische Daten über das ARDS berichten von einer Inzidenz zwischen 5 und 80 Fällen pro 100.000 Personen-Jahre bzw. 10 - 58 pro 100.000 Einwohner (Cortes et al. 2012, Hecker et al. 2008), wobei sich die Spannbreite mit der methodischen Unschärfe, der Auswahl der Fälle, der zu Grunde liegenden unterschiedlichen Definitionen, aber auch mit regionalen Unterschieden, wie Bevölkerungsdichte, Konsumgewohnheiten oder Therapieentscheidungen, die möglicherweise ein ARDS begünstigen, erklären lässt. Definitionsprobleme resultierten z.B. bislang aus der Frage, was als akuter Beginn gewertet werden kann, nach welchen Kriterien die Bewertung der Röntgenaufnahme erfolgt, sowie bei welchen Vorgaben des FiO₂ die Bestimmung des Oxygenierungsindex
Kapitel 1

Einleitung

ein ARDS auftritt. Dem Alter des Patienten kommt dabei eine wichtige Rolle zu, was sowohl die Inzidenz, als auch die Letalität betrifft, die mit steigendem Lebensalter ansteigt (Brun-Buisson et al. 2004). Das Risiko zu erkranken ist im Vergleich zu Jüngeren zwischen dem 60. und 69 Lebensjahr erhöht, nimmt dann allerdings wieder mit steigendem Alter ab, um bei Patienten die das 80. Lebensjahr überschritten haben, wieder das Niveau der 13 - 19 jährigen zu erreichen (Johnston et al. 2003).

Wie bereits erwähnt, charakterisiert der Begriff des ARDS einen Komplex aus verschiedenen Symptomen, die aber im Endeffekt ein relativ uniform erscheinendes Krankheitsbild repräsentieren. Dies ist auch der Grund warum es nicht ohne Mühe gelingt, eine klare Ätiologie zu definieren, was sich schon ansatzweise in der ersten Arbeit zum Thema ARDS von ASHBOUGH et al. abzeichnete.

Hierbei wurde das ARDS als Folge eines schweren Traumas, einer viralen Pneumonie, bzw. einer Pankreatitis identifiziert. Zwei dieser Ereignisse, das
Polytrauma, sowie die Pneumonie, ergänzt um die Sepsis und das Aspirationsgeschehen, zeichneten für die Mehrzahl der Fälle verantwortlich, in denen hierbei ein ARDS überdurchschnittlich häufig auftrat (Ashbaugh et al. 1967). In der Gesamtbetrachtung ist das Vorliegen einer Sepsis der häufigste Ausgangspunkt für die Entstehung eines ARDS (Piantadosi et al. 2004).

Außerdem wird deutlich, dass sich ein ARDS in Folge einer pulmonalen Schädigung, wie z.B. einer sich ausbreitenden Pneumonie, einem Inhalationstrauma, oder einem Aspirationsgeschehen von einem Auftreten der Krankheit, resultierend aus extrapulmonalen Einflüssen, wie z.B. nach einem erlittenem Polytrauma oder einer Verbrennung unterscheiden lässt (Gattinoni et al. 1998).

Diese Differenzierung spiegelt sich in der lungenmechanischen Einschränkung der Compliance des thorakopulmonalen Systems wieder. Während bei pulmonaler Genese die Einschränkung der pulmonalen Compliance führend ist, so steht bei einem ARDS mit extrapulmonaler Ätiologie die Verminderung der thorakalen Compliance, z.B. aufgrund des erhöhten intraabdominellen Drucks im Vordergrund (Gattinoni et al. 1998).

Es wird deutlich, dass die durch ein ARDS geschädigte Lunge eine Vielzahl an pathologischen Veränderungen kennzeichnet, die allerdings nicht homogen im gesamten Organ auftreten, sondern bevorzugt in den abhängigen Partien zu lokalisieren sind. Vor diesem Hintergrund entwickelten GATTINONI et al. das Modell der „Babylunge“ (Gattinoni et al. 2005), welches Lungenareale aufgrund ihrer pathophysiologischen Veränderungen zu 3 Zonen zuordnet, wobei gesunde Anteile beim ARDS-Patienten nur noch rund 20 – 30 % der Gesamtoberfläche ausmachen, und somit dem Gas austausch, symbolisch gesprochen, nur noch eine verkleinerte sogenannte „Babylunge“ zur Verfügung steht.

Auf Grund dessen lässt sich die ausgeprägte Hypoxämie, die den Symptomkomplex dominiert, als Folge eines Missverhältnisses in der Verteilung ventiler bzw. perfunder Lungenbezirke deuten. Je nach Ausprägung des ARDS sind Areale mit normalem Ventilations-Perfusions-Verhältnis in der Minderzahl, während sich im Gegensatz dazu Bezirke mit perfundierten, aber nicht ventilierten (sog. intrapulmonaler Rechts-Links-Shunt), bzw. ventilierten aber nicht perfundierten (sog. Totraumventilation) Alveolargebieten formieren, in denen folglich kein Gas austausch mehr möglich ist. Dies erklärt, warum sich die Hypoxämie durch eine deutliche Anhebung des \(\text{FiO}_2 \) nicht immer signifikant beeinflussen lässt.

Das bereits erwähnte Defizit an oberflächen-aktiven Substanzen (v. a. Phospholipide, Lecithinderivate und Proteine) bildet auch die pathophysiologische Grundlage einer weiteren schweren respiratorischen Funktionsstörung, dem sog.

Die Inzidenz korreliert in eindrücklicher Weise mit dem Gestationsalter und somit der Lungenreife bzw. der Möglichkeit der Surfactantproduktion des Kindes. Dies spiegelt sich im Anteil der Diagnose RDS an der Gesamtzahl der Diagnosen wider, der z.B. von ca. 67 % bei 24 - 27 SSW, ca. 55 % bei 28 - 29 SSW, ca. 42 % bei 30 - 31 SSW, bis hin zu ca. 9 % bei 32 - 36 SSW kontinuierlich sinkt, bis ab einem Gestationsalter von 37 SSW, die Diagnose RDS nicht mehr unter den 15 häufigsten zu finden ist (Hetschel et al.). Sie repräsentiert damit die häufigste Diagnose bis zu einem Gestationsalter von vollendeter 36 SSW, wenn man die Diagnose der Frühgeburtlichkeit, die per definitionem vorliegt, außer Acht lässt. Dies macht deutlich, dass die Unreife des Frühgeborenen den hauptsächlichen Risikofaktor für die Ausbildung eines RDS beschreibt, wobei sich weitere Faktoren wie z.B. das männliche Geschlecht, ein Diabetes der Mutter, sowie eine Entbindung per „sectio caesarea“ identifizieren lassen (Hansen et al. 2008, Dani et al. 1999).

Als therapeutische Intervention steht im Wesentlichen die pränatale Induktion der Lungenreifung bei drohender Frühgeburt mittels der Gabe von Glukokortikoiden, bzw. in der postnatalen Phase die Applikation von Surfactant zur Sicherstellung der Oxygenierung und der Ventilation des Neonaten im Vordergrund (Sweet et al. 2010).

Da bis zum jetzigen Zeitpunkt keine kausale Therapie des ARDS zur Verfügung steht, ist man auf die Anwendung symptomatischer Maßnahmen angewiesen, bei denen ein optimiertes Beatmungsregime zweifelsfrei als zentrale Säule der therapeutischen Intervention zu nennen ist. Daneben sind die Elimination eines möglichen Sepsisfokus mittels chirurgischer Maßnahmen bzw. mittels Antibiotikagabe, ein angepasstes Volumenregime, die Anwendung kinetischer Therapie wie z.B. der Bauchlage, antiinflammatorisch wirkenden Pharmaka, sowie eine spezielle Ernährung der Patienten als weitere Maßnahmen zu erwägen. Die Applikation inhalierbarer Vasodilatatoren wie Stickstoffmonoxid oder Prostaglandine (z.B. Flolan®), die Anwendung von Surfactant, die partielle
Kapitel 1

Einleitung

Flüssigkeitsventilation, ebenso wie der extrakorporale Lungenersatz (z.B. Decarboxylierung mittels des Novalung®-Systems) und die HFOV sind weitere Möglichkeiten der Behandlung, wenn gleich deren klinischer Nutzen bislang vielfach noch nicht abschließend geklärt ist.

Aufgrund des beschriebenen respiratorischen Versagens, das bei ARDS bzw. RDS Patienten zwangsläufig auftritt, ist eine mechanische Beatmung meist unerlässlich, wobei zum Teil eine relativ eingreifende Form mit hohen Beatmungsdrücken notwendig ist, um eine annähernd normale Blutgasituation, in Bezug auf Oxygenierung bzw. Ventilation aufrecht zu erhalten.

Um diese möglicherweise auftretenden Komplikationen zu reduzieren oder abzuwenden, haben sich lungenprotektive Beatmungsstrategien etabliert, die unter anderem die Anwendung eines PEEP, die Begrenzung der Atemwegsspitzendrücke auf < 35 cmH₂O, sowie der Atemzugvolumina auf etwa 5 – 7 ml/kg KG, die Beatmung im Bereich der optimalen Compliance des gesamten respiratorischen Systems, die maschinelle Beatmung in Bauchlage, sowie die Anwendung des Konzeptes der permissiven Hyperkapnie beinhalten.

Letzteres bezeichnete bislang keinen eigenständigen Therapieansatz, sondern war als unerwünschte Begleiterscheinung zu werten, die der Einsatz „Lungenprotektiver Beatmungsstrategien“ mit sich brachte. Diese basieren auf dem
Kapitel 1
Einleitung

Konzept die Dehnung der Lunge möglichst zu minimieren, was aus klinischer Sicht eine Limitierung oder Reduktion des Tidalvolumens bedeutet. Dieses Vorgehen führt als Konsequenz zum Auftreten einer relativen Hypoventilation, die zwar eine ausreichende Oxygenierung des Organismus gewährleistet, aber mit dem Anstieg des arteriellen Kohlenstoffdioxidpartialdrucks und folglich mit dem Auftreten einer Hyperkapnie mit respiratorischer Azidose vergesellschaftet ist. Die Tolerierung dieser Effekte zugunsten einer lungenprotektiven Beatmung führte zu dem von HICKLING et al. geprägten Begriff der permissiven Hyperkapnie (Hickling et al. 1990). Dass dieses Konzept Erfolg versprechend ist, konnte in einer multizentrischen Studie an 861 Patienten mit einem Oxygenierungsindex < 300 mmHg gezeigt werden, bei der die Reduktion des Tidalvolumens von 12 auf 6 ml/kg KG zu einer Abnahme der Letalität von ca. 40 % auf 31 % führte (Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. 2000). Außerdem berichten weitere klinischen Studien, dass die Anwendung von permissiver Hyperkapnie mit paCO₂ Werten zwischen 45 und 60 mmHg mit einer Reduktion der Mortalität einhergeht (Hickling et al. 1990, Kregenow et al. 2006). Wie bereits erläutert, wurde die hyperkapnische Azidose dabei mehr oder weniger billigend in Kauf genommen bzw. oft ganz oder teilweise durch den Einsatz von Pufferlösungen (NaHCO₃ oder TRIS) ausgeglichen. Tierexperimentell erworbene Daten sprechen jedoch dafür, dass die Azidose selbst die Ausprägung der Lungenschädigung beeinflusst, sowie dass dem paCO₂ bzw. der damit assoziierten hyperkapnischen Azidose eine entscheidende Rolle in der Pathogenese von Organschäden zukommt und diese deshalb selbst als lungen- und organprotektive Therapie bezeichnet werden kann (Moore et al. 1995). Im Gegensatz dazu erhöht eine Hypokapnie die mikrovaskuläre Permeabilität in der trachealen Mukosa (Reynolds et al. 1992) und kann sich negativ auf die Compliance der Lunge und den Atemwegswiderstand (Cutillo et al. 1974), sowie die Surfactantfunktion auswirken (Oyarzun et al. 1986). Weiterhin erfolgt eine Verschiebung der Sauerstoffbindungskurve nach links (Thews 2000), was zwar vor allem bei relativer Hypoxämie die pulmonale Sauerstoffaufnahme in das Blut erleichtert, andererseits aber die Abgabe in das Gewebe erschwert und mit einer eventuellen Hypokapnie bedingten Vasokonstriktion, die Gewebeperfusion behindert.
Es hat sich ferner gezeigt, dass die früher praktizierte Hyperventilation bei Schädel-Hirn-Traumen mit schlechterem neurologischem Outcome assoziiert war (Muizelaar et al. 1991). Des Weiteren zeigt die Hyperventilationstherapie bei der Behandlung der persistierenden pulmonalen Hypertonie neben einer erhöhten Rate an chronischen Lungenschäden eine Zunahme an schweren Störungen des Hörvermögens (Graziani et al. 1997).

Im Tierversuch imponiert die Schädigung im zentralen Nervensystem nach ischämischem Apoplex unter hypokapnischen Bedingungen ausgeprägter als bei Normokapnie (Vannucci et al. 1995). Ebenso zeigt sich unter Anwendung einer Hyperkapnie eine Reduzierung der hypoxisch-ischämisch Schädigung am Gehirn neugeborener Ratten, sowie eine verbesserte Oxygenierung des Hirngewebes (Tomimatsu et al. 2006).

Kapitel 1

Einleitung

Ziel der vorliegenden Arbeit ist es, die Schädigung der Lunge bei beatmeten Patienten (Früh- und Neugeborene, Kinder und Erwachsene) durch Anwendung des Konzepts der permissiven Hyperkapnie zu minimieren.

Sie folgt einer Reihe von HUMMLER et al. durchgeführten Untersuchungen, die an diesem Tiermodell eine Reduzierung der Lungenschädigung, gemessen am Feucht-/Trockengewicht der Lunge, sowie die Verbesserung der Oxygenierung, durch hyperkapnische Azidose bei paCO_2-Werten von 80 mmHg zeigen konnten. Außerdem wurde belegt, dass die Pufferung mit Natriumbikarbonat die Protektion der Lunge durch die hyperkapnische Azidose reduziert.

Deshalb soll nun der Einfluss verschiedener Ausprägungen der Hyperkapnie auf den Gasaustausch und die Lungenschädigung untersucht werden, bzw. in wie weit eine deutlich ausgeprägtere respiratorische Azidose eine zusätzliche Lungenprotektion bewirkt. Auf Grund dessen wurden folgende Studienhypothesen formuliert: Eine sehr ausgeprägte permissive Hyperkapnie bzw. eine ausgeprägte Hyperkapnie führt beim surfactant-depletierten Kaninchen zu geringerem Lungenschaden, gemessen an einem niedrigeren Feucht-/Trockengewicht, als eine mäßig ausgeprägte Hyperkapnie oder Normokapnie.

2. **Material und Methoden**

Die vorliegende Arbeit basiert auf einem an 64 Kaninchen durchgeführten Tierversuch, der von der Abteilung 3, Referat 35 des Regierungspräsidiums Tübingen als zuständige Aufsichtsbehörde genehmigt wurde (Aktenzeichen: 35/9185.81-3, Versuchsnummer: 848).

Es handelt sich um eine kontrollierte, randomisierte Studie in vier unterschiedlichen Behandlungsgruppen (Gruppe 40, 80, 120 und 160), die am Tierforschungszentrum der Universität Ulm am Oberberghof durchgeführt wurde.

2.1 Versuchstiere

Als Versuchstiere dienten 64 weibliche Kaninchen der Rasse „New Zealand white rabbit“ aus der Zucht von Harlan (Harlan Winkelmann GmbH, Borchens, Deutschland). Den Tieren wurden standardisierte Bedingungen, was sowohl die Haltung (L:D = 12:12), als auch das Nahrungsangebot (Altromin 2230, Altromin, GmbH und Co. KG, Lage, Deutschland) betraf, angeboten. Sowohl Futter, als auch Wasser standen Ihnen ad libitum zur Verfügung. Zum Versuchszeitpunkt betrug das Gewicht der Tiere 2869 g ± 157 g (Mittelwert ± SD) (siehe Tabelle 1).

| Tabelle 1: Körpergewicht der Kaninchen als Mittelwert ± SD in Gramm |
|----------------------|-----------------|-----------------|-----------------|-----------------|
| Gruppe | 40 | 80 | 120 | 160 |
| Körpergewicht | 2913 ± 144 | 2813 ± 199 | 2872 ± 141 | 2876 ± 134 |

2.2 Vorbereitung des Versuches

2.2.1 Ablauf / Intubation

Nach Anlage eines periphervenösen Zugangs (BD Insyte-W 24 GA, Becton Dickinson GmbH, Heidelberg, Deutschland) am linken Ohr und Abnahme einer venösen BGA erhielten die Tiere 0,5 mg Atropin (Atropinsulfat B. Braun 0,5 mg Injektionslösung, B. Braun, Melsungen, Deutschland) als Bolus, um möglicherweise auftretenden vagalen Reaktionen entgegenzuwirken.
Nach Narkoseeinleitung mittels einer Bolusinjektion Ketamin / Xylazin 15 - 40 mg/kg KG bzw. 1,5 - 4 mg/kg KG (Ketamin 10 %, WDT, Garbsen, Deutschland bzw. Rompun 2 %, Bayer HealthCare AG, Leverkusen, Deutschland), erfolgte die Positionierung der Tiere in Rückenlage auf der Versuchseinheit (Neugeborenenpflegeeinheit Babytherm 8000, Dräger, Lübeck, Deutschland), sowie die orale, endotracheale Intubation mit Hilfe eines Führungsdrähtes unter Sichtkontrolle. Hierbei kam ein Warmlicht-Laryngoskop mit speziellem Aufsatz, sowie Tuben der Größe 3,5 bzw. 3,0 mm ID (Lo-Contour® Tracheal Tube, Nellcor, Pleasanton, USA) mit geblocktem Cuff zum Einsatz. Die erfolgreiche Intubation wurde anhand des Hautkolorits der Tiere, des Beschlagens des Tubus, sowie durch sorgfältige Auskultation über beiden Thoraxhälften und durch Kontrolle der transkutan abgeleiteten Sauerstoffsättigung verifiziert.

2.2.2 Narkose

Die erforderliche Hypnose und Analgesie wurde im Rahmen einer total intravenösen Anästhesie (TIVA) mittels einer kontinuierlichen Zufuhr von Ketamin und Xylazin erzeugt, die im Verhältnis 19:1 vorlag. Dabei wurde die verabreichte Menge individuell an den Bedarf der Versuchstiere angepasst, mit der Zielvorgabe, eine ausreichend tiefe Bewusstseinsausschaltung und Analgesie zu erzeugen, um Spontanbewegungen und Schmerzempfindungen auszuschließen, was unter anderem unter Zuhilfenahme der Herzfrequenz, des Blutdrucks und der Auslösbarkeit des Kornealreflexes sowie durch Prüfung des Zwischenzehenreflexes beurteilt wurde.

2.2.3 Respiratoreinheit / Beatmungsregime / Atemwegsdruck

Als Beatmungseinheit wurde das Pädiatrie-Beatmungsgerät Stephanie (F. Stephan GmbH Medizintechnik, Gackenbach, Deutschland) verwendet.

2.2.4 Erhaltungsinfusion

Als Dauerinfusion erhielten die Tiere ein 1:1 Gemisch aus isotoner Natrium-Chlorid-Lösung (Isotone Kochsalz-Lösung 0,9 % Braun, B. Braun, Melsungen, Deutschland) und Pädiafusin (Pädiafusin®-I, Baxter, Unterschleißheim, Deutschland) über einen peripheren venösen Zugang. Ab einem Blutglukosegehalt von 250 mg/dl wurde diese Lösung durch eine 0,9 %ige NaCl-Lösung ersetzt, bis der Blutglukosegehalt wieder unter den Wert von 150 mg/dl gefallen war. Unterschritt der Blutglukosegehalt den Wert von 100 mg/dl erhielten die Tiere ausschließlich Pädiafusin, um ein weiteres Absinken zu verhindern. Alle Infusionslösungen wurden mit 1 IE Heparin (Heparin-Natrium-5000-ratiopharm® Injektionslösung, Ratiopharm, Ulm, Deutschland) je ml Lösung versetzt und in einer gewichtsadaptierten Menge von 5 ml je kg Körpergewicht pro Stunde zugeführt.
2.2.5 Anlage der zentralen Zugänge / Messung des zentralen Venendrucks, des arteriellen Blutdrucks und Bestimmung des Herzzeitvolumens

Auch hier war die Kontrolle der korrekten Lage des Katheters im Gefäßlumen durch Aspiration und durch Sichtkontrolle der Pulsation im Schlauchsystem obligat.

Anschließend erfolgte der Wundverschluss, sowie die Fixierung der beiden Katheter im Hautniveau mittels chirurgischer Nahttechnik, sowie der Anschluss an ein getrenntes Schlauchsystem, dass eine fortlauflende antegrade Spülung beider Kathetersysteme mit 3 ml/h einer mit 1 IE Heparin pro ml versetzten 0,9 %igen NaCl-Lösung gewährleistete.

Integriert in diesen Schlauchsystemen waren ebenfalls die Messeinrichtungen für die Bestimmung des zentralen Venendrucks und für die kontinuierliche invasive Blutdruckmessung.

Nach Anschluss des arteriellen Thermodilutionskatheters an das Picco System (Picco Plus, Pulsion Medical Systems AG, München, Deutschland) bestand nun weiterhin die Möglichkeit das Herzzeitvolumen transpulmonal zu bestimmen. Dazu wurden 2 ml einer kalten (< 4 °C) isotonischen Natriumchlorid-Lösung injiziert, die mit 1 IE Heparin pro ml Lösung versetzt wurde, um ebenfalls einer eventuell auftretenden Koagelbildung im Kathetersystem vorzubeugen. Es wurden jeweils 3 aufeinanderfolgende identische Messungen ausgeführt, deren Mittelwert gebildet und dieser wiederum auf das Körpergewicht des jeweiligen Tieres bezogen, um den Herzzeitvolumenindex zu bestimmen.

\[
HZVI = \frac{HZV [l/min]}{KG [kg]}
\]

Berechnung des Herzzeitvolumenindex [HZVI], HZV=Herzzeitvolumen, KG=Körpergewicht

Des Weiteren bestand über die beiden zentralen Zugänge eine sichere Möglichkeit zur venösen bzw. arteriellen Blutentnahme, und damit die Voraussetzung für eine korrekte Durchführung der Blutgasanalysen, Blutbilder, bzw. für die Bestimmung weiterer Blutparameter.
2.2.6 EKG / Ösophagusdruck

Um eine kontinuierliche Überwachung der Herzaktion zu gewährleisten, wurde ein 3-Kanal EKG über den rasierten Thorax der Tiere abgeleitet (Masimo Set 405T, IVY Biomedical Systems Inc., Branford, USA). Ein an der enthaarten Vorderpfote der Tiere angebrachtes Pulsoxymeter (Radical, Masimo Corporation, Irvine, USA) ermöglichte die transkutane Bestimmung der Sauerstoffsättigung sowie der Pulskurve. Ferner wurde durch die Positionierung einer Magensonde CH 8 im distalen Ösophagus die fortlaufende Messung des intrathorakalen Drucks ermöglicht, wobei deren korrekte Lage durch kurze endexspiratorische Okklusion und Thoraxkompressionen überprüft wurde. Ein Verhältnis \(\Delta p_E / \Delta P_{aw} \) von 1 ± 0,05 wurde als korrekt akzeptiert und dokumentiert. Die kontinuierliche Spülung erfolgte mittels einer Spritzenpumpe mit 1 ml sterilen Wasser (Aqua ad injectabilia Braun, B. Braun, Melsungen, Deutschland) pro Stunde.

2.2.7 Trepanation, Sondenanlage, Messung der intrazerebralen Perfusion und des intrazerebralen Drucks

Um die Messung der intrazerebralen Durchblutung sowie weiterer zerebraler Parameter zu realisieren, wurde zuerst der Kopf der Versuchstiere in einem speziell für diese Studie, in Zusammenarbeit mit der Wissenschaftlichen Werkstatt Feinwerktechnik der Universität Ulm angefertigten Rahmen, fixiert. Dies garantierte zum Einen das korrekte Setzen des Zugangsweges durch die Schädelkalotte, welcher 0,5 cm rechts lateral der Sutura sagitalis und 0,5 cm rostral der Sutura coronaria gewählt wurde, andererseits die Beibehaltung der räumlichen Beziehung zwischen Versuchstier und den später eingebrachten Messsonden. Es erfolgte nun unter kontinuierlicher Spülung mit steriler 0,9 %iger Kochsalzlösung die sorgfältig durchgeführte aseptische Trepanation mittels einer 6 mm Ø Kugelfräse, ohne Penetration der Dura mater. Nach deren Abschluss wurde das identische Vorgehen auf der gegenüberliegenden Seite wiederholt, um einen zweiten Zugangsweg zu schaffen. Die Messung der cerebralen Perfusion erfolgte anhand der Laser-Doppler-Flowmetry, der frühere Validierungsversuche eine hohe Korrelationen mit länger

\[
BPU = \frac{\text{Anzahl der sich im Gewebevolumen bewegenden Blutkörperchen}}{\text{Durchschnittsgeschwindigkeit der Blutkörperchen}}
\]

Um die Messgenauigkeit zu erhöhen, wurde für die grafischen Darstellungen und statistischen Berechnungen von allen Messwerten diejenigen „blood perfusion units“ abgezogen, die nach Beendigung des Versuchs am verstorbenen Tier noch messbar waren. Es erfolgte die Umrechnung in Prozentwerte, wobei die Werte zum Zeitpunkt „Baseline nach BAL“ den Prozentsatz von 100 bildeten und damit als Referenz dienten.

Über das zweite, rechts von der Mittellinie geschaffene Bohrloch erfolgte die kontinuierliche Messung des Hirndrucks. Dazu wurde nach Kalibration eine Messsonde (Codman MicroSensor ICP Transducer, Codman, Berkshire, United Kingdom) in das Hirnparenchym eingebracht und an das Monitoringsystem (CODMAN ICP EXPRESS Monitor, Codman, Raynham MA, USA) angeschlossen, was sich seit Jahren im klinischen Alltag bewährt hat und ebenfalls die Messung in Echtzeit erlaubt.
2.2.8 Blutgasanalysen

Alle arteriellen und zentralen Blutgasanalysen wurden unmittelbar nach Probenentnahme mittels eines Analysegerätes (Omni S6, Roche Diagnostics, Basel, Schweiz) vorgenommen. Die dabei verwendeten Spritzen wurden vor den Blutentnahmen mit einer Heparinlösung (100 IE/ml) gespült, um eine eventuelle Koagelbildung zu vermeiden. Folgende Parameter wurden ermittelt: pH, Kohlenstoffdioxid-Partialdruck (paCO₂) [mmHg], Sauerstoffpartialdruck (paO₂) [mmHg], jeweils temperaturkorrigiert; base excess (BE) [mmol/l], Natrium (Na⁺) [mmol/l], Kalium (K⁺) [mmol/l], ionisiertes Kalzium (Ca²⁺) [mmol/l], Glukose [mg/dl] und Laktat [mmol/l], sowie Hämatokrit [%].

Für die Bestimmung von Gesamt-Hämoglobinkonzentration (CtHb) [g/dl], Anteil des oxygenierten Hämoglobins (O₂Hb) [%], Anteil des desoxygenierten Hämoglobins (HHb) [%], arterielle Sauerstoffsättigung (SaO₂) [%], Gesamtsauerstoffkonzentration im Blut (CtO₂) [vol%] stand ein zweites Analysegerät (Omni 3, AVL, Graz, Österreich) zur Verfügung.

Hievon fanden ausgewählte Parameter Eingang in die Ergebnisauswertung. Auch hier wurden die verwendeten Spritzen mittels Heparinlösung gespült und die Blutproben ohne Zeitverzögerung eingegeben.

Die jeweils entnommene Menge Blut wurde unmittelbar durch die Verabreichung einer äquivalenten Dosis isotoner Kochsalzlösung ausgeglichen.

2.2.9 Blutentnahmen

Aus dem mit EDTA versetztem Blut wurde durch die Zentrale Einrichtung Klinische Chemie, Bereichslabor Michelsberg des Universitätsklinikums Ulm eine
Blutbildanalyse inklusive eines Differentialblutbildes angefertigt, bei der die Bestimmung folgender Parameter durchgeführt wurde:

- Erythrozyten \(10^6/\mu l\)
- Hämoglobin [g/dl]
- Mittleres Erythrozyteeinzelvolumen [fl]
- Thrombozyten \(10^3/\mu l\)
- Leukozyten \(10^3/\mu l\)
- Neutrophile Granulozyten relativ [%]
- Eosinophile Granulozyten relativ [%]
- Basophile Granulozyten relativ [%]
- Lymphozyten relativ [%]
- Monozyten relativ [%]
- Hämatokrit [l/l]

Hiervon fanden ebenso ausgewählte Parameter Eingang in die Ergebnisauswertung.

2.2.10 Datenaufzeichnung

Es erfolgte eine Digitalisierung aller ankommenden Signale mit 100 Hertz und die simultane Aufzeichnung aller Messwerte (inkl. der Signale des EKG, der Pulsoxymetrie, der Messung des Atemgasflows und des Atemwegsvolumens) durch ein Datenerfassungsprogramm (WinDaq®, DATAQ Instruments Inc., Akron, USA) welches auf einem IMB-PC kompatiblen Computer unter Windows (Windows 98, Microsoft, Unterschleißheim, Deutschland) realisiert wurde, bei dem täglich ein Zeitabgleich erfolgte (siehe Abbildung 2 und 3).
Abbildung 2: Beispiel der Datenaufzeichnung mittels WinDaq®. Die einzelnen Kurven sind rechts benannt. (ZVD=zentraler Venendruck, BPU=Blood-Perfusion-Unit, \(\text{SpO}_2 \)= transkutan bestimmte arterielle Sauerstoffsättigung, EKG=Elektrokardiogramm)

Übersicht der kontinuierlich erhobenen und dokumentierten Parameter:
Arterieller Blutdruck, zentraler Venendruck (ZVD), Atemwegsdruck (Paw), Atemgasflow, Atemzugvolumen (\(V_t \)), Ösophagusdruck (Pe), zerebrale Perfusion (ab Tier 45), Hirndruck (ab Tier 52), transkutane Sauerstoffsättigung (\(\text{SaO}_2 \)), Herzfrequenz (HF), Elektrokardiogramm (EKG), Herzzeitvolumen (HZV).

Abbildung 3: Versuchsaufbau mit Neugeborenen-Behandlungsplatz
2.3 „Baseline vor BAL“

Nachdem sämtliche vorbereitenden Schritte, wie die Schaffung der zentralen Zugänge, die Platzierung der zerebralen Messsonden, der Anschluss und die Funktionsprüfung sämtlicher Sensoren abgeschlossen waren, wurden unter Zuhilfenahme des Beatmungsgerätes drei ca. 6 s dauernde Blähmanöver ausgeführt.

Diese, mit einem V̇ von 8 ml/kg KG vorgenommenen Manöver dienten der Rekrutierung von möglicherweise während der Instrumentierung entstandenen atelektatischen Lungenarealen.

Gleichzeitig wurde der FiO₂ auf 1,0 angehoben, so dass die Tiere nun mit reinem Sauerstoff ventiliert wurden. Außerdem erfolgte eine Relaxation mittels der Gabe von 0,15 ml/kg KG Vecuronium (Vecuronium Inresa 10 mg, Inresa Arzneimittel GmbH, Freiburg, Deutschland), einem nicht depolarisierendem Muskelrelaxans, um eine eventuell auftretende Spontanatmung zu verhindern, die die Messung der lungenmechanischen Eigenschaften, sowie die der hämodynamischen Parameter beeinflussen hätte können. Nach durchgeführtem Nullabgleich der Drucksensoren für arteriellen Blutdruck, ZVD, Paw, sowie Pe wurde eine fünfminütige Aufzeichnung der Messwerte vorgenommen, die als „Baseline vor BAL“ in die Studienergebnisse einfloss und den Ausgangszustand der Tiere vor Induktion der Lungenerkrankung charakterisierte. Zusätzlich wurde anschließend eine arterielle sowie eine venöse Blutgasanalyse, eine arterielle Blutentnahme, die Bestimmung des Herzzeitvolumens mittels transpulmonaler Thermodilution, sowie die Gewinnung einer Urinprobe mittels aseptischer Punktion der Harnblase, vorgenommen. Auch aus den hierbei gewonnenen Daten wurden ausgewählte Parameter ebenfalls als „Baseline vor BAL“ miteinbezogen.

2.4 Bronchoalveoläre Lavage (initial)

Um den für das Tiermodell nötigen Lungenzustand, also die Induktion eines ARDS bzw. den dem Neugeborenen ähnlichen Mangel an Surfactantprotein zu erzeugen, wurden die Tiere einer Reihe bronchoalveolären Lavagen unterzogen. Diese erfolgten mit einer gewichtsadaptierten Menge von 15 ml/kg KG einer auf ca. 37 °C erwärmten physiologischen Kochsalzlösung, die über den endotrachealen
Tubus appliziert wurde. Unmittelbar vor Beginn der ersten Lavage, wurden die Tiere mittels der Gabe von 0,15 ml/kg KG Vecuronium paralysiert. Dies wurde in 15 minütigen Abständen bis zum Abschluss der letzten Lavage wiederholt.
Fünf Minuten nach der ersten BAL wurde eine zweite BAL mit identischer Flüssigkeitsmenge durchgeführt. Anhand des durch arterielle Blutgasanalysen gemessenen PaO₂-Wertes wurden gegebenenfalls eine dritte bzw. vierte und fünfte Lavage mit identischer Vorgehensweise anhand folgendem Protokoll durchgeführt. Unterschritt der PaO₂ 10 min. nach der 2. BAL den Wert von 200 mmHg, wurde nicht weiter lavagiert. Lag der zu diesem Zeitpunkt gemessene Wert zwischen 200 und 300 mmHg erfolgte in fünfminütigem Abstand eine erneute BGA, bei der ein steigender PaO₂ die 3. Lavage nach sich zog, während bei einer fallenden Tendenz keine weitere Lavage mehr durchgeführt wurde. Überschritt er den Wert von 300 mmHg wurde unmittelbar eine dritte BAL durchgeführt. Dieses Vorgehen wurde für die eventuell durchgeführte 4 bzw. 5 Lavage analog angewendet und sollte zu einer möglichst gleichförmigen Ausprägung der Lungenerkrankung bei allen Tieren führen (siehe Abbildung 4).
Die aspirierte Flüssigkeit der einzelnen Lavagen wurde gepoolt, deren Menge bestimmt und für die weitere Untersuchung im Hinblick auf die Bestimmung des Gesamtproteins sowie der darin enthaltenen zellulären Bestandteile verwandt.
2.5 „Baseline nach BAL“

Kapitel 2
Material und Methoden

2.6 6 h-Messintervall

2.6.1. Ablauf

Nach Beendigung des Baseline-Files („BL nach BAL“) wurde durch Öffnung eines der verschlossenen Randomisierungsumschläge das jeweilige Versuchstier einer der 4 unterschiedlichen Behandlungsgruppen zugeordnet. Diese bestanden aus jeweils 15 Tieren und ließen sich durch folgende Charakteristika definieren.

Gruppe 40: Normoventilation - Normokapnie
\(\text{paCO}_2\) zwischen 35 und 45 mmHg, \(V_t\) zwischen 8 und 10 ml/kg KG)

Gruppe 80: Hypoventilation - mäßig ausgeprägte Hyperkapnie
\(\text{paCO}_2\) zwischen 75 und 85 mmHg, \(V_t\) zwischen 4 und 5 ml/kg KG)

Gruppe 120: Hypoventilation - ausgeprägte Hyperkapnie
\(\text{paCO}_2\) zwischen 115 und 125 mmHg, \(V_t\) zwischen 3 und 4 ml/kg KG)

Gruppe 160: Hypoventilation - sehr ausgeprägte Hyperkapnie
\(\text{paCO}_2\) zwischen 155 und 165 mmHg, \(V_t\) zwischen 2 und 3 ml/kg KG)

Unmittelbar danach wurde das sechsständige Messintervall begonnen und folglich die Parameter der Beatmung entsprechend der Gruppenzugehörigkeit angepasst: Der PEEP wurde in allen Gruppen von 4 auf 6 cmH\(\text{O}\) erhöht, um einem etwaigem Kollaps der Alveolen bei Surfactantmangel vorzubeugen; das Tidalvolumen (\(V_t\)) entsprechend der Gruppenzugehörigkeit eingestellt.

Um den jeweils gewünschten Zielbereich im Hinblick auf den \(\text{paCO}_2\) zu erreichen wurde im Folgenden alle 15 Minuten eine arterielle Blutgasanalyse durchgeführt, und in Abhängigkeit von deren Ergebnis die Beatmungsfrequenz variiert. Ebenfalls alle 15 Minuten wurden die Tiere mittels der periphervenösen Gabe von 0,15 ml/kg KG Vecuronium relaxiert um eine eventuell auftretende Spontanatmung zu verhindern, die die Messung der lungenmechanischen Eigenschaften, sowie die der hämodynamischen Parameter hätte beeinflussen können.
Zusätzlich wurde zu jeder vollen Stunde eine zentralvenöse Blutgasanalyse erhoben, wobei deren Ergebnisse, sowie die der halb- und stündlich durchgeführten arteriellen BGA’s (0,5 h, 1 h, ..., 5,5 h, 6 h) in das Studienergebnis einfliefen.

Die Messung des Herzzeitvolumens mittels beschriebener Thermodilution wurde ebenfalls stündlich durchgeführt (1 h – 6 h).

In einem zweiständigen Intervall (2 h, 4 h, 6 h) wurden die 3 arteriellen Blutentnahmen während des Messintervalls vorgenommen (siehe Abbildung 5). Außerdem erfolgte zur Stunde 6 eine erneute aseptische Punktion der Blase zur Gewinnung einer zweiten Urinprobe. Während des gesamten Messintervalls erfolgte eine, wie oben beschriebene kontinuierliche Datenaufzeichnung deren Reliabilität durch wiederholte Durchführung (jeweils 15 Min vor jeder vollen Stunde) eines Nullabgleiches aller Sensoren sichergestellt wurde.

Abbildung 5: Schema der durchgeführten arteriellen und venösen Blutgasanalysen (BGA), Blutentnahmen (BE) und Herzzeitvolumenmessungen (HZV) am Beispiel eines Versuchstieres; (Vorb.=Vorbehandlung, BL=Baseline, BAL=bronchoalveolare Lavage, Obd.=Obduktion, h=Stunde)
2.6.2. *Unterstützung der Hämodynamik*

Bei instabilen Kreislaufverhältnissen (systolischer Blutdruck kleiner 60 mmHg) erhielten die Tiere zur Unterstützung 10 ml/kg KG isotone Kochsalzlösung infundiert. Diese Volumengaben erfolgten mit einer Geschwindigkeit von 200 ml/h und waren auf zweimalige Applikation innerhalb eines Zeitraumes von 2 h limitiert, wobei bei einem ZVD über 10 mmHg keine weiteren Gaben mehr zur Anwendung kamen.

Falls durch dieses Verfahren keine ausreichende Stabilisierung des Blutdrucks erreicht werden konnte, wurde den Tieren zusätzlich 5 µg/kg KG pro Minute Dopamin (Dopamin Fresenius 50 mg/5 ml Infusionslösungskonzentrat, Fresenius Kabi Deutschland GmbH, Bad Homburg v. d. H., Deutschland) verabreicht. Die Dosis wurde in abhängig von der Wirkung auf den systolischen Blutdruck ggf. adjustiert, aber auf maximal 45 µg/kg KG pro Minute begrenzt. Sowohl der Volumenersatz, als auch die Gabe des Dopamins wurden über einen zweiten, ebenfalls mittels eines Insytes geschaffenen periphervenösen Zugangsweg am rechten Ohr der Versuchstiere ermöglicht.

2.6.3. *Kompensation der Azidose*

Um eine eventuell auftretende ausgeprägte Azidose zu kompensieren, wurde bei einem gemessenen Basendefizit kleiner -10 mmol/l eine Pufferlösung (Natriumhydrogencarbonat-einmolar Fresenius, Fresenius Kabi, Bad Homburg v.d.H., Deutschland) zugeführt. Die Menge von 5 mmol pro Bolusgabe wurde über einen Zeitraum von 30 Minuten zugeführt.

2.7 *Obduktion*

2.7.1 *Ablauf*

Nach Abschluss des 6 h-Messintervalls wurden die überlebenden Tieren mittels einer periphervenös verabreichten Injektion von 50 mg Thiopental (Trapanal®, Altana Pharma GmbH, Konstanz, Deutschland) getötet. Unmittelbar danach erfolgte die Änderung des Beatmungsmusters mit einer Reduktion des FiO₂ auf 0,21, also auf das Niveau von Raumluft und der Übergang in den CPAP Modus mit einem Druck von 6 cmH₂O.

Unter Zuhilfenahme einer 7 Megapixel auflösenden digitalen Kamera (Digital Ixus 700, Canon Deutschland GmbH, Krefeld, Deutschland) wurde der Zustand der Lunge in Siti von sternocostal, als auch von diaphragmal dokumentiert.

Danach wurde die rechte Lunge möglichst dicht an der Bifurcatio tracheae abgesetzt und aus dem Thorax entnommen, nachdem zuvor eine Ligatur des rechten Hauptbronchus erfolgt war. Der akzessorische Lappen der entnommenen Lunge wurde entfernt, in flüssigem Stickstoff bei ca. -196 °C tiefgefroren und dann bei -87 °C gelagert, während dessen wurde das Feuchtgewicht der anderen Lungenanteile mittels einer digitalen Waage (Navigator N34120, Ohaus, New York, USA) bestimmt.

Im Anschluss daran erfolgte die terminale Lavage der rechten Lunge (siehe unten) mit nachfolgender Verbringung der rechten Lunge in einen Wärmeschrank (FB420, Heraeus, Thermo Scientific, Waltham, USA), in dem sie bei ca. 42 °C so lange getrocknet wurde, bis das täglich ermittelte Gewicht über 3 Tage konstant geblieben war. Das dann festgestellte Trockengewicht wurde mit dem nach Obduktion ermittelten Feuchtgewicht zur Berechnung des Quotienten des Feucht-/Trockengewichts verwendet.

Nach weiteren Präparationsschritten, wie der Eröffnung des linken Herzohres wurde eine Kanülierung der Arteria pulmonalis vorgenommen, welche nun die Perfusion der im Situs verbliebenen linken Lunge mit 100 ml einer mit 95 % Sauerstoff und 5 % Kohlenstoffdioxid äquilibrierten Spüllösung bei einem standardisierten Druck von 27 cmH₂O ermöglichte. Dieser auf Ringerlaktat basierenden Spüllösung waren die Komponenten Procain (250 mg/l), Kalziumchlorid (2,2 mmol/l) sowie 20 IE/ml Heparin zugesetzt (Klinikumsapotheke, Universitätsklinikum Ulm). Anschließend erfolgte die ca. 15 minütige intrathorakale Perfusionsfixierung über den gleichen Zugangsweg.
Diese wurde mittels ca. 200 ml einer 4,6 % Formaldehydlösung, versetzt mit 0,5 % Gluteraldehyd, vorgenommen.

Danach wurde die Lunge aus dem Thorax entnommen und ihr Zustand mittels fotografischer Dokumentation aus lateraler, medialer, inferiorer und diaphragmaler Ansicht festgehalten, nachdem sie unmittelbar über eine Minute mit einem Druck von 20 cmH₂O gebläht wurde.

Zum Abschluss wurde die linke Lunge unter Beibehaltung eines Atemwegsdrucks von 10 cmH₂O für mindestens weitere 8 h in einer Konservierungslösung (Formalin / Gluteraldehyd) immersionsfixiert, und danach der standardisierten histologischen Begutachtung zugeführt. Zusätzlich wurden Gewebeproben aus den Organen Leber und linker Niere, sowie aus dem proximalen Abschnitt des Duodenums entnommen, die anschließend hälf tig nach Schockgefrieren in flüssigem Stickstoff bei -86 °C tiefgefroren bzw. in bekannter Formaldehydlösung aufbewahrt wurden. Ab Tier 54 umfassten die Organentnahmen auch das gesamte Gehirn, das nach Eröffnung des Schädels und Präparation der Meningen entnommen und ebenfalls zur Hälft e tiefgefroren bzw. in Formalin konserviert wurde. Die Entnahme dieser Gewebeproben erfolgte, um im weiteren Verlauf ggf. weitere Untersuchungen durchführen zu können.

2.7.2 Bronchoalveoläre Lavage (terminal)

Im Verlauf der Obduktion wurde die rechte Lunge ex situ mit einem Tubus der Größe 2 bzw. 3 mm ID intubiert und unter Einbeziehung aller drei Lungenlappen dreimal mit 7,5 ml/kg KG einer sterilen 0,9% NaCl-Lösung lavagiert, wobei die injizierte Flüssigkeit passiv über ein Gefälle zurücklief, aufgefangen und deren Menge bestimmt wurde. Hiervon wurden 28 ml für weitere Analysen, wie die Bestimmung der darin enthaltenen Anzahl an Zellen, deren Differenzierung bzw. die Bestimmung des Gesamtproteins, weiter verwandt.

Um die Bestimmung dieser Parameter aus der Lavageflüssigkeit zu ermöglichen, wurde sowohl die zu Beginn des Experiments gewonnene Flüssigkeit, als auch die bei der post mortem durchgeführten Lavage der rechten Lunge erhaltene Flüssigkeit der Zentralen Einrichtung Klinische Chemie zugeführt.
2.8 Untersuchung der Lungen
2.8.1 Quotient Feucht- / Trockengewicht

Der Begriff Feucht- / Trockengewicht beschreibt den Quotienten aus dem Gewicht unmittelbar nach Entnahme der rechten Lunge, sowie dem nach vollständiger Trocknung erreichten Gewicht derselben.

2.8.2 Makroskopische Beurteilung

Die makroskopische Beurteilung des Lungenzustandes erfolgte durch Herrn Dr. med. Martin Schwenger (Sektion Neonatologie und pädiatrische Intensivmedizin der Klinik für Kinder- und Jugendmedizin des Universitätsklinikums Ulm, Eythstr.24, 89075 Ulm) anhand der in situ (von diaphragmal bzw. sternokostal) von beiden Lungen angefertigten Bilder (siehe Abbildung 6). Die Beurteilung wurde bezüglich der Gruppenzugehörigkeit maskiert anhand eines Scores vorgenommen, der die Parameter Belüftung (Gasgehalt) und Parenchymeinblutung einschloss, wobei jeweils 0 - 3 Punkte vergeben wurden (siehe Tabelle 2).

Abbildung 6: Beispielhafte Abbildung der diaphragmalen Ansicht der Lunge zweier Tiere in situ

<table>
<thead>
<tr>
<th></th>
<th>0 Punkte</th>
<th>1 Punkt</th>
<th>2 Punkt</th>
<th>3 Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belüftung</td>
<td>sehr gut</td>
<td>gut</td>
<td>schlecht</td>
<td>sehr schlecht</td>
</tr>
<tr>
<td>Parenchymblutung</td>
<td>keine</td>
<td>minimal</td>
<td>mäßig</td>
<td>ausgeprägt</td>
</tr>
</tbody>
</table>
2.8.3 Mikroskopische Beurteilung

Die mikroskopische Begutachtung der aus der immersionsfixierten linken Lunge entnommenen Gewebeproben wurde durch Herrn Dr. med. Michael Ebsen (Direktor des Institutes für Pathologie am Medizinisches Versorgungszentrum des Städtischen Krankenhauses Kiel, Chemnitzstraße 33, 24116 Kiel) vorgenommen, dem die Präparate hinsichtlich der Gruppenzugehörigkeit maskiert vorgelegt wurden.

Die Auswertung der in Paraffin eingebetteten und anschließend mittels einer Hämatoxylin-Eosin-Färbung aufgearbeiteten feingeweblichen Schnitte erfolgte semiquantitativ anhand eines Scores der folgende Parameter berücksichtigte:

- Alveoläre und interstitielle Inflammation,
- alveoläre und interstitielle Einblutung,

Tabelle 3: Score zur mikroskopischen Beurteilung der linken Lunge (%=Prozent).

<table>
<thead>
<tr>
<th>Beurteilungskriterien</th>
<th>Schädigung in des Gesichtsfeldes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 %</td>
</tr>
<tr>
<td>Atelektasen</td>
<td>0 Punkte</td>
</tr>
<tr>
<td>Alveoläre Entzündung</td>
<td></td>
</tr>
<tr>
<td>Interstitielle Entzündung</td>
<td></td>
</tr>
<tr>
<td>Alveoläre Blutung</td>
<td></td>
</tr>
<tr>
<td>Interstitiell Blutung</td>
<td></td>
</tr>
<tr>
<td>Alveoläres Ödem</td>
<td></td>
</tr>
<tr>
<td>Interstitielles Ödem</td>
<td></td>
</tr>
<tr>
<td>Nekrose</td>
<td></td>
</tr>
<tr>
<td>Überblähung</td>
<td></td>
</tr>
</tbody>
</table>
2.9 Statistik / Berechnungen

2.9.1 Berechnung der Lungencompliance

Mit Hilfe der aufgezeichneten Messwerte für Atemgasflow, Atemwegsdruck, Ösophagusdruck und dem bekannten Körpergewicht des Tieres wurde die dynamische inspiratorische Compliance pro Kilogramm Körpergewicht C_i [ml/cmH$_2$O/kg KG] bestimmt. Hierzu wurde ein Computerprogramm zur Auswertung von Lungenfunktionsdaten (PFTDAT by Nelson Claure, University of Miami, School of Medicine, Miami, USA) das nach der „equation of motion“ arbeitet, verwandt (Silva Neto et al. 1992). Zu den einzelnen Messzeitpunkten wurden jeweils 10 Atemzüge (1., 3., 5., ..., 17., 19. Atemzug) vermessen und deren Mittelwerte für jeden Zeitpunkt errechnet.

Bewegungsgleichung zur Berechnung der dynamischen Compliance:

\[p = R \cdot V'(t) + E \cdot V(t) + p_o \]

\begin{align*}
R &= \text{Resistance} = \frac{\Delta p}{V'} \quad \text{[cmH}_2\text{O/ml/min]} \\
V'(t) &= \text{Flow} \quad \text{[ml/min]} \\
E &= \text{Elastance} = \frac{1}{C} \quad \text{[ml/cmH}_2\text{O]} \\
C &= \text{Compliance} = \frac{\Delta V}{\Delta p} \quad \text{[cmH}_2\text{O/l]} \\
V(t) &= \text{Tidalvolumen} \quad \text{[ml]} \\
p_o &= \text{PEEP} \quad \text{[cmH}_2\text{O]} \\
\end{align*}

2.9.2 Berechnung von Sauerstoffangebot (DO$_2$) / Sauerstoff-Differenz (avDO$_2$)

Die Berechnung des arterio-venösen Sauerstoffangebots erfolgte anhand folgender Formeln:

\[DO_2 = CO \cdot CaO_2 \]

\begin{align*}
CO &= \text{cardiac output} \quad \text{[ml / kg / min$^{-1}$]} \\
CaO_2 &= \text{Sauerstoffgehalt} \quad \text{[ml O}_2\text{/ ml Blut]} \\
\end{align*}
CaO₂ = SaO₂ \cdot Hb \cdot 1,34 + \alpha / 760 \cdot paO₂

<table>
<thead>
<tr>
<th>SaO₂</th>
<th>arterielle Sauerstoffsättigung</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb</td>
<td>Hämoglobingehalt</td>
<td>[g / ml Blut \cdot 100⁻¹]</td>
</tr>
<tr>
<td>\alpha</td>
<td>Bunsen-Löslichkeitskoeffizient,</td>
<td>[ml O₂ \cdot ml Blut⁻¹ \cdot atm⁻¹]</td>
</tr>
<tr>
<td>für Blut bei 37°C: 0,028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paO₂</td>
<td>Sauerstoffpartialdruck</td>
<td>[mmHg = atm/760]</td>
</tr>
<tr>
<td>1,34 = Hüfner-Zahl</td>
<td></td>
<td>[ml O₂ / g Hb]</td>
</tr>
</tbody>
</table>

Die Berechnung des Sauerstoffverbrauchs erfolgte anhand der arterio-venösen Differenz zwischen dem arteriellen und venösen Blut.

2.9.3 Fallzahlberechnung

Auf Grundlage vorangegangener Studien entspricht eine Differenz des Feucht-/Trockengewichts von 3,61 einem Wert von 30 % gegenüber der Kontrollgruppe. Bei einer Standardabweichung der Messung des Feucht-/Trockengewichts von 2,89 werden 15 Tiere pro Gruppe benötigt (ANOVA; \alpha = 0,05; \beta = 0,2), das bedeutet, dass bei 4 unterschiedlichen Gruppen insgesamt 60 Tiere untersucht werden müssen.

Aufgrund der Erfahrungen früherer Studien erscheint ein Sicherheitszuschlag für Fehlschläge bei der Instrumentierung bzw. bei der Induktion der Lungenerkrankung von 15 % sinnvoll, so dass sich eine Fallzahl zwischen minimal 60 und maximal 69 Tieren ergibt.

2.9.4 Statistische Bewertung der Ergebnisse

Die statistische Bewertung erfolgte mit Hilfe eines speziellen Statistikprogrammes (SigmaStat 2.03, SPSS Inc., Chicago, USA).

Der Vergleich von kontinuierlichen Variablen erfolgte bei Normalverteilung mit einem zwei-zeitigem t-test, bei Nicht-Normalverteilung mit einem Mann-Whitney-Rank-Sum Test.

Die Beurteilung von wiederholten parametrischen Messwerten zwischen den einzelnen Gruppen wurde bei Normalverteilung mittels einer Varianzanalyse (ANOVA) für wiederholte Messwerte vorgenommen. Bei wiederholten
Messwerten, bei denen keine Normalverteilung vorlag, wurde ebenfalls eine Varianzanalyse (ANOVA) für wiederholte Messwerte durchgeführt, allerdings erfolgte zuvor eine Transformation der Messwerte in Ränge. Die Darstellung der Ergebnisse erfolgte bei vorliegender Normalverteilung als Mittelwert ± Standardabweichung, ansonsten als Median mit Angabe der 25.-75. Perzentile. Das Signifikanzniveau wurde mit $p = 0.05$ festgelegt. Ferner wurde bestimmt, dass nur Tiere, die nicht vor Beendigung des sechsstündigen Messintervalls verstorben waren, in die Studienergebnisse mit einbezogen wurden.

2.9.5 Zielkriterien

Kapitel 3
Ergebnisse

In die Ergebnisauswertung fanden 60 Tiere Eingang (15 je Gruppe).

3.1 Mortalität

Von den insgesamt 64 Tieren verstarben zwei in der Gruppe 40 am Auftreten eines Pneumothorax, ein Tier verstarb in Gruppe 120 an einer iatrogen verursachten Luftembolie, sowie ein Tier in Gruppe 160 an einer akut auftretenden schweren Hypoxämie, so dass insgesamt 4 Tiere vor Beginn, oder während des 6 h-Messintervalls verstarben und gemäß dem Studienprotokoll nicht in die Ergebnisauswertung mit einbezogen wurden.

3.2 Körpergewicht

Das Gewicht der Versuchstiere in den 4 Behandlungsgruppen wies keinen signifikanten Unterschied auf (p=0,380) und betrug im Durchschnitt 2869 g ± 157 g (siehe Tabelle 4).

Tabelle 4: Körpergewicht der Versuchstiere. Dargestellt als Mittelwert ± Standardabweichung in Gramm. (n=15 je Gruppe)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Körpergewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>2913 ± 144</td>
</tr>
<tr>
<td>80</td>
<td>2813 ± 199</td>
</tr>
<tr>
<td>120</td>
<td>2872 ± 141</td>
</tr>
<tr>
<td>160</td>
<td>2876 ± 134</td>
</tr>
</tbody>
</table>

3.3 „Baseline“-Werte

Tabelle 5 zeigt die Werte aller erhobenen Parameter zum Zeitpunkt „Baseline nach BAL“, also nach Induktion der uniform ausgeprägten Lungenschädigung. Es wird deutlich, dass sich die vier Behandlungsgruppen zu Beginn des Messintervalls in keinem der einzelnen Parameter signifikant unterscheiden (p-Werte siehe Tabelle 5).
Tabelle 5: „Baseline“-Werte der Versuchstiere. Dargestellt als Median mit 25. und 75. Perzentile. Die jeweilige Maßeinheit ist in der ersten Spalte, der dazu gehörige p-Wert in der letzten Spalte zu finden. (%=Prozent, mmHG=MillimeterQuecksilbersäule, cmH$_2$O=Zentimeter-Wassersäule, mmol=Millimol, l=Liter, dl=Deziliter, ml=Milliliter, µl=Mikroliter, kg=Kilogramm, g=Gramm, mg=Milligramm KG=Körpergewicht, min=Minute; n = 15 je Gruppe)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellzahl der initial durchgeführten bronchoalveolären Lavage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zellen [Zellen*10/µl]</td>
<td>23 (18,25 – 45,5)</td>
<td>29 (25,5 - 48)</td>
<td>24 (18 - 33)</td>
<td>32 (20 - 40)</td>
<td>0,706</td>
</tr>
<tr>
<td>Zelluläre Differenzierung der initial durchgeführten bronchoalveolären Lavage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alveolar Makrophagen [%]</td>
<td>95 (89,5 - 98)</td>
<td>93,5 (91,25 - 96)</td>
<td>94 (94 - 98)</td>
<td>93 (85,5 - 96)</td>
<td>0,624</td>
</tr>
<tr>
<td>Granulozyten [%]</td>
<td>4 (2 - 7)</td>
<td>6 (4 - 8)</td>
<td>5 (2 - 6)</td>
<td>6 (3,5 - 11,5)</td>
<td>0,659</td>
</tr>
<tr>
<td>Mono- / bzw. Lymphozyten [%]</td>
<td>0 (0 - 5)</td>
<td>0 (0 - 0)</td>
<td>0 (0 - 0,5)</td>
<td>0 (0 - 4)</td>
<td>0,384</td>
</tr>
<tr>
<td>Proteinbestimmung in der BAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtprotein [mg/l]</td>
<td>68 (24,3 - 136,5)</td>
<td>85 (47,8 - 100,3)</td>
<td>79 (34 - 196)</td>
<td>89,5 (52,8 - 121,5)</td>
<td>0,988</td>
</tr>
<tr>
<td>Proteinbestimmung im Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtprotein [g/l]</td>
<td>39,8 (37,8 - 41,1)</td>
<td>39,2 (37,2 - 40)</td>
<td>39,8 (38,9 - 41,5)</td>
<td>40,6 (39,4 - 41,8)</td>
<td>0,385</td>
</tr>
<tr>
<td>Blutgasanalysen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7,36 (7,32 - 7,39)</td>
<td>7,34 (7,30 - 7,38)</td>
<td>7,36 (7,34 - 7,37)</td>
<td>7,33 (7,30 - 7,37)</td>
<td>0,551</td>
</tr>
<tr>
<td>Kohlenstoffdioxid-partialdruck paCO$_2$ [mmHg]</td>
<td>45,1 (39,9 - 48,6)</td>
<td>45,1 (41,4 - 48,6)</td>
<td>42,9 (40,6 - 46,9)</td>
<td>48,1 (43 - 50,1)</td>
<td>0,508</td>
</tr>
<tr>
<td>Sauerstoff-partialdruck paO$_2$ [mmHg]</td>
<td>130,8 (82,7 - 178,2)</td>
<td>127,3 (78,5 - 199,8)</td>
<td>127,3 (106,3 - 227,7)</td>
<td>- (105,5 - 224)</td>
<td>0,894</td>
</tr>
<tr>
<td>base excess</td>
<td>-1,6 (-2,3 - 0,1)</td>
<td>-0,7 (-4,4 - 0,2)</td>
<td>-1 (-2,05 - 0,2)</td>
<td>-1 (-3,5 - 1,3)</td>
<td>0,821</td>
</tr>
<tr>
<td>Gruppe</td>
<td>40</td>
<td>80</td>
<td>120</td>
<td>160</td>
<td>p-Wert</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>Sauerstoffstatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sauerstoffsättigung arteriell (SaO2) [%]</td>
<td>100 (96,1 - 100)</td>
<td>100 (98,4 - 100)</td>
<td>100 (97,7 - 100)</td>
<td>100 (99,7 - 100)</td>
<td>0,822</td>
</tr>
<tr>
<td>Sauerstoffangebot arteriell (DO₂) [ml/kg KG x min]</td>
<td>17,97 (14,73 - 19,72)</td>
<td>17,11 (16,01 - 19,45)</td>
<td>18,53 (16,53 - 19,56)</td>
<td>18,03 (17,03 - 19,37)</td>
<td>0,656</td>
</tr>
<tr>
<td>Sauerstoffverbrauch (avDO₂) [ml/kg KG x min]</td>
<td>6,81 (5,74 - 7,20)</td>
<td>7,39 (6,0 - 9,06)</td>
<td>7,84 (6,88 - 8,09)</td>
<td>7,20 (6,42 - 7,44)</td>
<td>0,564</td>
</tr>
<tr>
<td>Elektrolyte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natrium (Na⁺) [mmol/l]</td>
<td>139,4 (138,6 - 140,5)</td>
<td>138,9 (138,3 - 140,3)</td>
<td>140,7 (138,4 - 141,7)</td>
<td>139,9 (138,3 - 141,2)</td>
<td>0,507</td>
</tr>
<tr>
<td>Kalium (K⁺) [mmol/l]</td>
<td>3,24 (3,06 - 3,31)</td>
<td>3,32 (3,18 - 3,61)</td>
<td>3,10 (3,03 - 3,38)</td>
<td>3,21 (3,14 - 3,40)</td>
<td>0,252</td>
</tr>
<tr>
<td>Kalzium ionisiert (Ca²⁺) [mmol/l]</td>
<td>1,53 (1,43 - 1,59)</td>
<td>1,52 (1,49 - 1,54)</td>
<td>1,51 (1,42 - 1,53)</td>
<td>1,57 (1,43 - 1,59)</td>
<td>0,679</td>
</tr>
<tr>
<td>Hämodynamische Parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herzfrequenz (HF) [Schläge/min]</td>
<td>154 (138 - 155)</td>
<td>150 (141,5 - 171,5)</td>
<td>159 (150,5 - 168,5)</td>
<td>159 (150 - 174,5)</td>
<td>0,428</td>
</tr>
<tr>
<td>mittlerer arterieller Blutdruck (MAD) [mmHg]</td>
<td>53,3 (45,5 - 64,8)</td>
<td>56,8 (48,3 - 61,9)</td>
<td>55,1 (52,8 - 55,8)</td>
<td>58,6 (55,1 - 63,5)</td>
<td>0,344</td>
</tr>
<tr>
<td>zentraler Venendruck (ZVD) [mmHg]</td>
<td>5,2 (4,8 - 5,8)</td>
<td>4,4 (4,1 - 4,9)</td>
<td>4,9 (4,3 - 5,1)</td>
<td>4,8 (4,2 - 5,3)</td>
<td>0,216</td>
</tr>
<tr>
<td>Herzzeitvolumenindex (HZVI) [ml/kg KG x min]</td>
<td>112,8 (108,8 - 133,4)</td>
<td>124,6 (114,7 - 145,3)</td>
<td>130,3 (113,1 - 145,1)</td>
<td>128,6 (119 - 134,7)</td>
<td>0,660</td>
</tr>
<tr>
<td>Gruppe</td>
<td>40</td>
<td>80</td>
<td>120</td>
<td>160</td>
<td>p-Wert</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>Laktat [mmol/l]</td>
<td>1,4 (1,0 - 1,6)</td>
<td>1,25 (0,9 - 2,05)</td>
<td>1,25 (0,9 - 2,38)</td>
<td>1,2 (0,9 - 1,7)</td>
<td>0,801</td>
</tr>
<tr>
<td>Glukose [mg/dl]</td>
<td>206 (175 - 224)</td>
<td>210,5 (177,8 - 250,3)</td>
<td>200,50 (194,5 - 214,8)</td>
<td>186 (177 - 222,5)</td>
<td>0,826</td>
</tr>
<tr>
<td>Compliance (C_i) [ml/cmH_2O/kg KG]</td>
<td>0,67 (0,58 – 0,73)</td>
<td>0,68 (0,55 – 0,73)</td>
<td>0,63 (0,58 – 0,80)</td>
<td>0,70 (0,54 – 0,78)</td>
<td>0,872</td>
</tr>
<tr>
<td>mittlerer Atemwegsdruck (Paw) [cmH_2O]</td>
<td>5,8 (5,3 - 6,3)</td>
<td>5,4 (5,3 - 5,8)</td>
<td>5,6 (5,5 - 6)</td>
<td>5,4 (5,3 - 6)</td>
<td>0,804</td>
</tr>
<tr>
<td>mittlerer Ösophagusdruck (Pe) [cmH_2O]</td>
<td>7,2 (6,4 - 7,8)</td>
<td>6,8 (6,1 - 7,2)</td>
<td>7,4 (6,1 - 7,9)</td>
<td>7,4 (6,7 - 9,2)</td>
<td>0,247</td>
</tr>
<tr>
<td>Hämatokrit [%]</td>
<td>0,35 (0,34 - 0,36)</td>
<td>0,33 (0,33 - 0,34)</td>
<td>0,35 (0,34 - 0,36)</td>
<td>0,35 (0,34 - 0,37)</td>
<td>0,083</td>
</tr>
<tr>
<td>Hämoglobin [10^6/μl]</td>
<td>10,3 (9,9 - 10,9)</td>
<td>10 (9,7 - 10,5)</td>
<td>10,6 (10,3 - 10,9)</td>
<td>10,3 (10,2 - 11)</td>
<td>0,363</td>
</tr>
<tr>
<td>Erythrozyten [10^3/μl]</td>
<td>4,87 (4,70 - 5,02)</td>
<td>4,66 (4,48 - 4,90)</td>
<td>5,02 (4,79 - 5,14)</td>
<td>4,96 (4,84 - 5,10)</td>
<td>0,103</td>
</tr>
<tr>
<td>Thrombozyten [10^3/μl]</td>
<td>189 (167,5 - 227)</td>
<td>230 (182,5 - 245)</td>
<td>225 (181,5 - 265)</td>
<td>228 (202 - 267,5)</td>
<td>0,282</td>
</tr>
<tr>
<td>Leukozyten [10^3/μl]</td>
<td>3,43 (3,20 - 3,60)</td>
<td>3,43 (2,82 - 3,87)</td>
<td>3,32 (3 - 3,87)</td>
<td>3,43 (3,11 - 4,18)</td>
<td>0,899</td>
</tr>
<tr>
<td>Neutrophile Granulozyten [10^3/μl]</td>
<td>1,35 (1,06 - 1,71)</td>
<td>1,40 (0,83 - 1,88)</td>
<td>1,27 (0,95 - 1,45)</td>
<td>1,66 (1,15 - 1,79)</td>
<td>0,782</td>
</tr>
</tbody>
</table>
3.4 **Quotient Feucht- / Trockengewicht**

Abbildung 7: Darstellung der Mediane mit 25. und 75. Perzentile des Quotienten Feucht- / Trockengewichts der rechten Lunge der 4 Behandlungsgruppen im Überblick (n=15 je Gruppe).

Die Medianen des Quotienten aus dem Feucht- / Trockengewicht der rechten Lunge, welcher als primäres Zielkriterium definiert wurde, betrugen in der Gruppe 40 **9,98** (7,51 - 10,44), in der Gruppe 80 **5,75** (5,42 - 6,52), in der Gruppe 120 **5,70** (5,38 - 6,70) und in der Gruppe 160 **5,94** (5,71 - 6,63). Folglich lässt sich ein signifikanter Unterschied zwischen Gruppe 40 und 80, zwischen Gruppe 40 und 120 und zwischen Gruppe 40 und 160 feststellen (p=<0,001) (siehe Abbildung 7).

3.5 Lungengewebe

3.5.1. Makroskopische Beurteilung

Die makroskopische Beurteilung der diaphragmalen Lungenanteile beider Lungen wurde anhand des in Tabelle 2 beschriebenen semiquantitativen Scores anhand der Kriterien „Einblutung in das Parenchym“, sowie „Belüftung des Parenchym’s“ vorgenommen.
Dabei erfolgte die Beurteilung geblendet mittels der in situ angefertigten fotografischen Aufnahmen, wobei ein höherer Score-Wert eine ausgeprägtere Schädigung repräsentiert. Hierbei zeigt sich ein signifikanter Unterschied zwischen der Gruppe 40 und 80, sowohl beim Bewertungskriterium Einblutung, als auch bei der Belüftung (p=<0,05) (siehe Tabelle 6).

Tabelle 6: Darstellung der Score-Werte der Parameter Einblutung und Belüftung der makroskopischen Bewertung der gesamten linken und rechten Lunge der Versuchstiere. Dargestellt als Median mit 25. und 75. Perzentile in Punkten (n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einblutung</td>
<td>2 (2 - 3)</td>
<td>1 (0-1)</td>
<td>1 (1 - 2)</td>
<td>2 (0,5 - 2)</td>
</tr>
<tr>
<td>Belüftung</td>
<td>1 (1 - 2)</td>
<td>0 (0 - 1)</td>
<td>0 (0 - 1)</td>
<td>1 (0 - 1)</td>
</tr>
</tbody>
</table>

3.5.2. Mikroskopische Beurteilung

Wie erwähnt erfolgte die histologische Bewertung der abhängigen und nichtabhängigen Areale des jeweiligen Ober- und Unterlappen der linken Lunge anhand des in Tabelle 3 beschriebenen semiquantitativen Scores. Die Betrachtung der ermittelten Mediane der Summenscores ergeben eine signifikant ausgeprägtere Schädigung (p=<0,001) in der Gruppe 40, repräsentiert durch den um Faktor 2 deutlich höheren Punkt-Wert im Vergleich zu den drei verbliebenen Gruppen, die ähnliche Werte aufweisen (siehe Abbildung 8 und Tabelle 7).
Kapitel 3

Ergebnisse

Abbildung 8: Darstellung der Mediane mit 25. und 75. Perzentile des Summenscores der histologischen Bewertung der gesamten linken Lunge der 4 Behandlungsgruppen in Punkten (n=15 je Gruppe.).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summenscore</td>
<td>45 (37 - 55)</td>
<td>20 (15 - 24)</td>
<td>19 (17 - 22,5)</td>
<td>21 (17,5 - 24)</td>
</tr>
</tbody>
</table>

Die statistisch getrennte Auswertung der abhängigen und nicht abhängigen Lungenareale ergab jeweils signifikant höhere Werte als Zeichen der Lungenschädigung in der Gruppe 40 im Vergleich zu den übrigen drei Gruppen (p=<0,001; p=<0,001). Im Bereich der Ober und Unterlappen der Lunge konnte für die Gruppe 40 ebenfalls eine signifikant höhere Schädigung anhand der histologischen Begutachtung nachgewiesen werden (p=<0,001; p=<0,001).
Insgesamt zeigt sich eine deutlich ausgeprägtere Lungenschädigung in der Gruppe 40 im Vergleich zu den anderen drei Gruppen mit ebenfalls signifikanter Betonung der dorsalen und kaudalen Abschnitte innerhalb dieser Gruppe (p=0,022; p=0,005) (siehe Tabelle 8).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberlappen</td>
<td>18 (13,5 - 20)</td>
<td>8 (7,5 - 10,5)</td>
<td>9 (8 - 11)</td>
<td>10 (8,5 - 12)</td>
</tr>
<tr>
<td>Unterlappen</td>
<td>27 (22 - 32,5)</td>
<td>12 (8 - 14,5)</td>
<td>10 (8,5 - 11)</td>
<td>10 (9 - 11,5)</td>
</tr>
<tr>
<td>Nicht abhängig</td>
<td>18 (14,5 - 23)</td>
<td>9 (8 - 11,5)</td>
<td>9 (7 - 11)</td>
<td>10 (8,5 - 10,5)</td>
</tr>
<tr>
<td>abhängig</td>
<td>26 (22 - 31,5)</td>
<td>11 (8 - 13)</td>
<td>10 (9,5 - 12)</td>
<td>11 (9 - 12)</td>
</tr>
</tbody>
</table>

Die Betrachtung der bewerteten Einzelparameter ergab signifikante Unterschiede zwischen der Gruppe 40 und den übrigen drei Behandlungsgruppen hinsichtlich der Alveolären Inflammation (Gesichtsfeld und Ausprägung), der interstitiellen Inflammation (Gesichtsfeld und Ausprägung), des alveolären und interstitiellen Ödems und dem Auftreten von Atelektasen (p jeweils <=0,001).

Keine signifikanten Unterschiede lieferte die Auswertung hinsichtlich alveolärer und interstitieller Einblutung, Überblähung, sowie hinsichtlich des Vorhandenseins von Nekrosen (p-Werte siehe Tabelle 9).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveoläre Infiammation (GF)</td>
<td>4 (2,5 - 5,5)</td>
<td>0 (0 - 0,5)</td>
<td>0 (0 - 0)</td>
<td>0 (0 - 0)</td>
<td><0,001</td>
</tr>
<tr>
<td>Alveoläre Infiammation (AP)</td>
<td>5 (4 - 6)</td>
<td>0 (0 - 0,5)</td>
<td>0 (0 - 0)</td>
<td>0 (0 - 0)</td>
<td><0,001</td>
</tr>
<tr>
<td>Alveoläre Blutung</td>
<td>0 (0 - 2,5)</td>
<td>0 (0 - 0)</td>
<td>0 (0 - 1)</td>
<td>0 (0 - 0,5)</td>
<td>0,312</td>
</tr>
<tr>
<td>Interstitielle Infiammation (GF)</td>
<td>5 (3,5 - 6,5)</td>
<td>0 (0 - 1)</td>
<td>0 (0 - 0)</td>
<td>0 (0 - 1)</td>
<td><0,001</td>
</tr>
<tr>
<td>Interstitielle Infiammation (AP)</td>
<td>5 (4 - 7)</td>
<td>0 (0 - 0,5)</td>
<td>0 (0 - 0)</td>
<td>0 (0 - 1)</td>
<td><0,001</td>
</tr>
<tr>
<td>Interstitielle Blutung</td>
<td>4 (3 - 5)</td>
<td>4 (2,5 - 6)</td>
<td>4 (2 - 10)</td>
<td>6 (5 - 10)</td>
<td>0,127</td>
</tr>
<tr>
<td>Alveoläres Ödem</td>
<td>4 (3 - 5)</td>
<td>0 (0 - 1)</td>
<td>0 (0 - 0)</td>
<td>0 (0 - 0)</td>
<td><0,001</td>
</tr>
<tr>
<td>Interstitielles Ödem</td>
<td>5 (2,5 - 7,5)</td>
<td>1 (0 - 3,5)</td>
<td>1 (0 - 2)</td>
<td>0 (0 - 1)</td>
<td><0,001</td>
</tr>
<tr>
<td>Atelektasen</td>
<td>3 (1,5 - 4,5)</td>
<td>0 (0 - 0)</td>
<td>0 (0 - 0)</td>
<td>0 (0 - 0)</td>
<td><0,001</td>
</tr>
<tr>
<td>Überblähung</td>
<td>10 (9 - 10,5)</td>
<td>11 (10 - 12)</td>
<td>11 (10 - 11,5)</td>
<td>10 (8 - 11,5)</td>
<td>0,209</td>
</tr>
<tr>
<td>Nekrose</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,000</td>
</tr>
</tbody>
</table>

3.6 Bronchoalveoläre Lavage

3.6.1. Anzahl der durchgeführten Lavagen

Die Anzahl der zur Induktion des Surfactantmangels nötigen Lavagen betrug im Median 3 bzw. 4 und unterschied sich somit nicht signifikant zwischen den vier Gruppen (p=0,394) (siehe Tabelle 10).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl BAL</td>
<td>4 (3-4)</td>
<td>3 (3-4)</td>
<td>3 (3-4)</td>
<td>4 (3-4)</td>
</tr>
</tbody>
</table>
3.6.2. **Zellzahl der initial und terminal durchgeführten BAL**

Abbildung 9: Darstellung der Mediane mit 25. und 75. Perzentile der Zellzahl in der initial und terminal durchgeführten bronchoalveolären Lavage für jede der 4 Behandlungsgruppen (µl=Mikroliter; n=15 je Gruppe).

Untersucht wurden die Anzahl der Zellen pro Mikroliter sowohl in der initialen, als auch in der terminal durchgeführten BAL. Zum initialen Zeitpunkt zeigte sich kein Unterschied zwischen den Gruppen (siehe Tabelle 5).

Bei der Betrachtung der Zellzahl, die die terminale BAL liefert, zeigt sich eine signifikante Zunahme in der Gruppe 40, sowie eine signifikante Abnahme in den Gruppen 120 und 160. In der Gruppe 80 ist ein Trend zur Abnahme der Zellzahl zu verzeichnen (siehe Tabelle 11).

Zum Zeitpunkt der terminal durchgeführten BAL ergeben sich signifikante Unterschiede zwischen der Gruppe 40 und 120 (p<0,05), sowie zwischen der Gruppe 40 und 160 (p<0,05).
Kapitel 3

Tabelle 11: Vergleich der Zellzahl in der initial und terminal durchgeführten bronchoalveolären Lavage der Versuchstiere, sowie die dazu gehörigen p-Werte aus vorgenommenem t-Test. Darstellung als Median in Zellen*10 pro Mikroliter (BAL=bronchoalveolare Lavage, %=Prozent; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale BAL</td>
<td>23</td>
<td>29</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>terminale BAL</td>
<td>64</td>
<td>17</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>Differenz</td>
<td>+41</td>
<td>-12</td>
<td>-16</td>
<td>-14</td>
</tr>
<tr>
<td>% initiale BAL</td>
<td>278,26</td>
<td>58,62</td>
<td>33,33</td>
<td>56,25</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,012</td>
<td>0,351</td>
<td>0,006</td>
<td>0,020</td>
</tr>
</tbody>
</table>

3.6.3. Zelluläre Differenzierung der initial und terminal durchgeführten BAL

Abbildung 10: Darstellung der Mittelwerte der zellulären Differenzierung der initial und terminal durchgeführten bronchoalveolären Lavage für jede der 4 Behandlungsgruppen (%=Prozent; n=15 je Gruppe).
Kapitel 3

Ergebnisse

Die zelluläre Differenzierung der initial und terminal durchgeführten bronchoalveolären Lavage umfasste die drei Zellarten: Alveolarmakrophagen, Mono- / Lymphozyten, sowie Granulozyten.

Bei der initial durchgeführten BAL konnte kein signifikanter Unterschied hinsichtlich dieser drei Zellpopulation zwischen den vier Gruppen nachgewiesen werden (siehe Tabelle 5). Im Gegensatz dazu ist bei der terminal durchgeführten BAL für die beiden Zellarten Alveolarmakrophagen und Granulozyten jeweils ein signifikanter Unterschied zwischen der Gruppe 40 und den übrigen drei Gruppen zu beschreiben (p=<0,001). Ausgehend von der Gruppe 160, bei der eine Zunahme der Granulozytenanzahl mit einem Faktor von ca. 2,5 erfolgte, über die Gruppe 120 mit dem Faktor ca. 4,6 und die Gruppe 80 mit einem Faktor von ca. 6,8, stieg die Anzahl der Granulozyten in der Gruppe 40 um mehr als das 13-fache an (siehe Tabelle 12). Analog dazu erfolgte die Veränderung der Alveolarmakrophagen (siehe Tabelle 13). Für die Anzahl der Lymphozyten findet sich hingegen kein signifikanter Unterschied zwischen den einzelnen Gruppen zu diesem Zeitpunkt (p=0,376) (siehe Tabelle 14).

Tabelle 12: Vergleich der Anzahl Granulozyten in der initial und terminal durchgeführten bronchoalveolären Lavage der Versuchstiere, sowie die dazu gehörigen p-Werte aus vorgenommenem t-Test. Darstellung als Mittelwert in Prozent (BAL=bronchoalveolare Lavage, %=Prozent; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale BAL</td>
<td>5,8</td>
<td>6,21</td>
<td>5,67</td>
<td>7,33</td>
</tr>
<tr>
<td>terminale BAL</td>
<td>77,93</td>
<td>42,53</td>
<td>26,40</td>
<td>18,87</td>
</tr>
<tr>
<td>Differenz</td>
<td>+ 72,13 %</td>
<td>+ 36,32 %</td>
<td>+ 20,73 %</td>
<td>+ 11,54 %</td>
</tr>
<tr>
<td>% initiale BAL</td>
<td>1343,62</td>
<td>684,86</td>
<td>465,61</td>
<td>257,44</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td>0,002</td>
<td>0,005</td>
<td>0,021</td>
</tr>
</tbody>
</table>
Kapitel 3 Ergebnisse

Tabelle 13: Vergleich der Anzahl Alveolarmakrophagen in der initial und terminal durchgeführten bronchoalveolären Lavage der Versuchstiere, sowie die dazu gehörigen p-Werte aus vorgenommenem t-Test. Darstellung als Mittelwert in Prozent (BAL=bronchoalveoläre Lavage, %=Prozent; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale BAL</td>
<td>90</td>
<td>93,21</td>
<td>92,53</td>
<td>87,33</td>
</tr>
<tr>
<td>terminale BAL</td>
<td>18,6</td>
<td>55,27</td>
<td>65,53</td>
<td>71,47</td>
</tr>
<tr>
<td>Differenz</td>
<td>- 71,4 %</td>
<td>- 37,94 %</td>
<td>- 27 %</td>
<td>- 15,86 %</td>
</tr>
<tr>
<td>% initiale BAL</td>
<td>20,67</td>
<td>59,3</td>
<td>70,82</td>
<td>81,84</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td>0,004</td>
<td>0,002</td>
<td><0,001</td>
</tr>
</tbody>
</table>

Tabelle 14: Vergleich der Anzahl Lympho- und Monozyten in der initial und terminal durchgeführten bronchoalveolären Lavage der Versuchstiere, sowie die dazu gehörigen p-Werte aus vorgenommenem t-Test. Darstellung als Mittelwert in Prozent (BAL=bronchoalveoläre Lavage, %=Prozent; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale BAL</td>
<td>4,2</td>
<td>0,57</td>
<td>1,8</td>
<td>5,33</td>
</tr>
<tr>
<td>terminale BAL</td>
<td>3,47</td>
<td>2,2</td>
<td>8,07</td>
<td>9,67</td>
</tr>
<tr>
<td>Differenz</td>
<td>- 0,73 %</td>
<td>+ 1,63 %</td>
<td>+ 6,27 %</td>
<td>+ 4,34 %</td>
</tr>
<tr>
<td>% initiale BAL</td>
<td>89,05</td>
<td>385,96</td>
<td>448,33</td>
<td>181,43</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,910</td>
<td>0,055</td>
<td>0,024</td>
<td>0,131</td>
</tr>
</tbody>
</table>
3.6.4. Gesamtprotein in der initial und terminal durchgeführten BAL

Abbildung 11: Darstellung der Mediane mit 25. und 75. Perzentile des Gesamtproteins der Versuchstiere in der initial und terminal durchgeführten bronchoalveolären Lavage (mg=Milligramm, l=Liter, BAL=bronchoalveolare Lavage; n=13 für Gruppe 40, n=14 für Gruppe 80 und 160, n=13 für Gruppe 120).

Die laborchemische Analyse des Gesamtprotein in der initial durchgeführten bronchoalveolären Lavage zeigt keinen signifikanten Unterschied zwischen den vier Behandlungsgruppen (siehe Tabelle 5).

Im Gegensatz dazu lässt sich in der terminal durchgeführten BAL, die nach Beendigung des 6 stündigen Messintervalls vorgenommen wurde, ein signifikanter Unterschied zwischen Gruppe 40 und 80 nachweisen (p=0,035).

Außerdem wird hierbei eine statistisch signifikante Zunahme des Gesamtproteins im Vergleich zur initial durchgeführten BAL bei den Gruppen 40, 80 und 160 sichtbar, wobei diese Zunahme in der Gruppe 40, gefolgt von der Gruppe 160 am deutlichsten war (siehe Tabelle 15).
Tabelle 15: Vergleiche des Gesamtproteins der Versuchstiere in der initial und terminal durchgeführten bronchoalveolären Lavage isoliert für jede der vier Gruppen, sowie der dazu gehörigen p-Werte aus durchgeführt em t-Test. Dargestellt als Median in Milligramm pro Liter. (%=Prozent, BAL=bronchoalveoläre Lavage; n=13 für Gruppe 40, n=14 für Gruppe 80 und 160, n=13 für Gruppe 120)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>68</td>
<td>85</td>
<td>79</td>
<td>89,5</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>760</td>
<td>300</td>
<td>182</td>
<td>585</td>
</tr>
<tr>
<td>Differenz</td>
<td>+ 692</td>
<td>+ 215</td>
<td>+ 103</td>
<td>+ 495,5</td>
</tr>
<tr>
<td>% Baseline</td>
<td>1117,85</td>
<td>352,94</td>
<td>230,38</td>
<td>653,63</td>
</tr>
<tr>
<td>p-Wert</td>
<td>< 0,001</td>
<td>0,01</td>
<td>0,120</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

3.7 Blutgasanalysen

3.7.1. pH-Wert

Abbildung 12: Darstellung der Mediane mit 25. und 75. Perzentile der potentia hydrogenii im arteriellen Blut der Versuchstiere (ph=potentia hydrogenii, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).
In allen vier Gruppen ist ein kontinuierlicher Abfall des pH-Wertes über das gesamte Messintervall sichtbar, wobei sich dieser in der Gruppe 40 am schwächsten und abgestuft bis zur Gruppe 160 am deutlichsten zeigt.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich signifikante Unterschiede zwischen allen vier Gruppen feststellen (p-Werte siehe Tabelle 16).

<table>
<thead>
<tr>
<th>Tabelle 16: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
</tr>
<tr>
<td>p-Wert</td>
</tr>
</tbody>
</table>

Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt ebenfalls Signifikanzen in allen 4 Gruppen (siehe Tabelle 17).

<table>
<thead>
<tr>
<th>Tabelle 17: Vergleiche der potentia hydogenii im arteriellen Blut der Versuchstiere zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) isoliert für jede der vier Gruppen, sowie der dazu gehörigen p-Werte aus durchgeführtem t-Test. Dargestellt als Median in Absolutwert. (%=Prozent, BAL=bronchoalveolare Lavage; n=15 je Gruppe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe</td>
</tr>
<tr>
<td>„Baseline n. BAL“</td>
</tr>
<tr>
<td>Stunde 6</td>
</tr>
<tr>
<td>Differenz</td>
</tr>
<tr>
<td>% Baseline</td>
</tr>
<tr>
<td>p-Wert</td>
</tr>
</tbody>
</table>
3.7.2. Kohlenstoffdioxidpartialdruck (paCO₂)

Abbildung 13: Darstellung der Mediane mit 25. und 75. Perzentile des Kohlenstoffdioxidpartialdrucks im arteriellen Blut der Versuchstiere. (paCO₂=Kohlenstoffdioxidpartialdruck, mmHg=Millimeter Quecksilbersäule, BAL=bronchoalveolare Lavage, h=Stunde; n=15 je Gruppe)

In den Gruppen 80, 120 und 160 wird ca. zum Zeitpunkt Stunde 1 der vom Protokoll vorgegebene paCO₂-Wert erreicht, welcher dann über das Messintervall relativ konstant beibehalten wird. In Gruppe 40 bleibt der Wert, ebenfalls wie im Protokoll vorgegeben auf dem Niveau der „Baseline nach BAL“.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich erwartungsgemäß signifikante Unterschiede zwischen allen vier Gruppen feststellen (p-Werte siehe Tabelle 18).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>
Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt ebenfalls Signifikanzen in den Gruppen 80, 120 und 160.

In Gruppe 40 lässt sich wie erwartet kein signifikanter Unterschied feststellen.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>45,10</td>
<td>45,10</td>
<td>42,90</td>
<td>48,10</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>39,70</td>
<td>80,70</td>
<td>121</td>
<td>165,90</td>
</tr>
<tr>
<td>Differenz</td>
<td>- 5,4</td>
<td>+ 35,6</td>
<td>+ 78,1</td>
<td>+117,8</td>
</tr>
<tr>
<td>% Baseline</td>
<td>88,03</td>
<td>178,94</td>
<td>282,05</td>
<td>344,91</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,055</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>
3.7.3. Sauerstoffpartialdruck (paO₂)

Abbildung 14: Darstellung der Mediane mit 25. und 75. Perzentile des Sauerstoffpartialdrucks im arteriellen Blut der Versuchstiere. (paO₂=Sauerstoffpartialdruck, mmHG=Millimeter Quecksilbersäule, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).

Während bei der Gruppe 40 ein kontinuierlicher mäßiger Abfall des paO₂ über das gesamte Messintervall zu verzeichnen ist, steigt dieser in den verbleibenden 3 Gruppen deutlich bis zum ca. zum Zeitpunkt Stunde 1 bis Stunde 2 an, um dann das erreichte Niveau in etwa bis zum Ende des Messintervalls beizubehalten.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich signifikante Unterschiede zwischen der Gruppe 40 und 80, zwischen Gruppe 40 und 120 und zwischen der Gruppe 40 und 160 feststellen. Es konnte kein signifikanter Unterschied zwischen den Gruppen 80, 120 und 160 gefunden werden (p-Werte siehe Tabelle 20).
Tabelle 20: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td><0,001</td>
<td>0,009</td>
<td>0,914</td>
<td>0,865</td>
<td>0,484</td>
</tr>
</tbody>
</table>

Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt ebenfalls Signifikanzen in den Gruppen 80 und 120.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>130,8</td>
<td>127,3</td>
<td>127,3</td>
<td>108,9</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>53</td>
<td>259,5</td>
<td>322,4</td>
<td>187,3</td>
</tr>
<tr>
<td>Differenz</td>
<td>-77,8</td>
<td>+132,2</td>
<td>+195,1</td>
<td>+78,4</td>
</tr>
<tr>
<td>% Baseline</td>
<td>40,52</td>
<td>203,85</td>
<td>253,26</td>
<td>171,99</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,503</td>
<td><0,001</td>
<td><0,001</td>
<td>0,201</td>
</tr>
</tbody>
</table>
3.7.4. *base excess (BE)*

![Graph showing base excess over time for different groups.](image)

In allen vier Gruppen zeigt sich über das gesamte Messintervall ein kontinuierlicher uniformer Abfall des *base excess* auf Werte zwischen ca. -8 bis -10 mmol/l.

Dabei konnte kein signifikanter Unterschied zwischen den vier Gruppen gefunden werden (p-Werte siehe Tabelle 22).

Tabelle 22: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>1</td>
<td>0,996</td>
<td>0,841</td>
<td>0,989</td>
<td>0,884</td>
<td>0,723</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>-1,60</td>
<td>-0,70</td>
<td>-1,00</td>
<td>-1,00</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>-9,00</td>
<td>-9,90</td>
<td>-7,80</td>
<td>-9,30</td>
</tr>
<tr>
<td>Differenz</td>
<td>-7,4</td>
<td>-9,2</td>
<td>-6,8</td>
<td>-8,3</td>
</tr>
<tr>
<td>% Baseline</td>
<td>562,5</td>
<td>1414,29</td>
<td>780</td>
<td>930</td>
</tr>
<tr>
<td>p-Wert</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>
3.8 Sauerstoffstatus

3.8.1. arterielle Sauerstoffsättigung (SaO₂)

Abbildung 16: Darstellung der Mediane mit 25. und 75. Perzentile der Sauerstoffsättigung im arteriellen Blut der Versuchstiere. (SaO₂=arterielle Sauerstoffsättigung, art=arteriell, %=Prozent, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe)

Ausgehend von einer arteriellen Sauerstoffsättigung von 100 % zum Zeitpunkt „Baseline nach BAL“ bei allen vier Gruppen, wird bei der Gruppe 40 ein kontinuierlich deutlicher Abfall der SaO₂ um mehr als 20 % über das gesamte Messintervall sichtbar, während dessen sich die übrigen 3 Gruppen unverändert bei einem Wert von 100 % darstellen.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich signifikante Unterschiede zwischen der Gruppe 40 und 80, zwischen Gruppe 40 und 120 und zwischen der Gruppe 40 und 160 feststellen (p-Werte siehe Tabelle 24).
Kapitel 3

Ergebnisse

Tabelle 24: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,006</td>
<td><0,001</td>
<td>0,002</td>
<td>0,389</td>
<td>0,972</td>
<td>0,661</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>„Baseline n. BAL“</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stunde 6</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Differenz</td>
<td>- 24,8</td>
<td>+ 0</td>
<td>+ 0</td>
<td>+ 0</td>
<td>+ 0</td>
</tr>
<tr>
<td>% Baseline</td>
<td>75,2</td>
<td>+ 0</td>
<td>+ 0</td>
<td>+ 0</td>
<td>+ 0</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td>0,688</td>
<td>0,125</td>
<td>0,945</td>
<td></td>
</tr>
</tbody>
</table>
3.8.2 **Sauerstoffangebot (DO\textsubscript{2})**

Abbildung 17: Darstellung der Median mit 25. und 75. Perzentile des Sauerstoffangebotes im arteriellen Blut der Versuchstiere. (DO\textsubscript{2} = Sauerstoffangebot, ml=Milliliter, kg=Kilogramm, min=Minute, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe)

Ausgehend von einem identischen Sauerstoffangebot zum Zeitpunkt „Baseline nach BAL“ zeigt sich ein etwa gleichförmiger Anstieg in den Hyperkapniegruppen im Vergleich zur Gruppe 40, bei der das DO\textsubscript{2} über das gesamte Messintervall größtenteils unverändert bleibt.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich signifikante Unterschiede zwischen der Gruppe 40 und den übrigen drei Behandlungsgruppen feststellen (p-Werte siehe Tabelle 26).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,003</td>
<td><0,001</td>
<td><0,001</td>
<td>0,420</td>
<td>0,864</td>
<td>0,932</td>
</tr>
</tbody>
</table>
Kapitel 3

Ergebnisse

Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt keine signifikanten Unterschiede.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>17,97</td>
<td>17,11</td>
<td>18,53</td>
<td>18,03</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>16,13</td>
<td>19,77</td>
<td>21,12</td>
<td>18,61</td>
</tr>
<tr>
<td>Differenz</td>
<td>-1,84</td>
<td>+2,66</td>
<td>+2,59</td>
<td>+0,58</td>
</tr>
<tr>
<td>% Baseline</td>
<td>89,76</td>
<td>115,55</td>
<td>113,98</td>
<td>103,22</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,228</td>
<td>0,061</td>
<td>0,103</td>
<td>0,088</td>
</tr>
</tbody>
</table>
3.8.3 Arterio-venöse Sauerstoff-Differenz (avDO₂)

Abbildung 18: Darstellung der Mediane mit 25. und 75. Percentile der arterio-venösen Sauerstoffdifferenz der Versuchstiere (avDO₂=arterio-venöse Sauerstoffdifferenz, ml=Milliliter, kg=Kilogramm, min=Minute, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).

Während die Gruppen 80 und 120 über das Messintervall einen fast konstanten Sauerstoffverbrauch zeigen, ist bei der Gruppe 40 eine mäßige und bei der Gruppe 160 eine deutliche Zunahme, vor allem in der zweiten Hälfte des Messintervalls zu verzeichnen.

Allerdings gibt es beim Vergleich zwischen den Gruppen über das gesamte Messintervall keine signifikanten Unterschiede (p=0,312).

Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt eine signifikante Zunahme bei allen vier Gruppen.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>6,81</td>
<td>7,39</td>
<td>7,84</td>
<td>7,20</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>8,60</td>
<td>8,76</td>
<td>8,53</td>
<td>9,94</td>
</tr>
<tr>
<td>Differenz</td>
<td>+ 1,79</td>
<td>+ 1,37</td>
<td>+ 0,69</td>
<td>+ 2,74</td>
</tr>
<tr>
<td>% Baseline</td>
<td>126,28</td>
<td>118,54</td>
<td>108,80</td>
<td>138,06</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,010</td>
<td>0,040</td>
<td>0,027</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

3.9 **Elektrolyte**

3.9.1. **Natriumkonzentration (Na⁺)**

Abbildung 19: Darstellung der Mediane mit 25. und 75. Perzentile der Natriumkonzentration im arteriellen Blut der Versuchstiere (mmol=Millimol, l=Liter, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).
In allen vier Gruppen ist ein Anstieg der extrazellulären Natrium-Konzentration über das gesamte Messintervall zu verzeichnen, wobei dieser in der Gruppe 40 am deutlichsten und in der Gruppe 120 am geringsten ausfällt.

Beim Gruppenvergleich über das gesamte Messintervall gibt es keine signifikanten Unterschiede zwischen allen vier Gruppen (p-Werte siehe Tabelle 29).

Tabelle 29: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,991</td>
<td>0,690</td>
<td>0,937</td>
<td>0,509</td>
<td>0,848</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 30: Vergleich der Natriumkonzentration im arteriellen Blut der Versuchstiere zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) isoliert für jede der vier Gruppen, sowie der dazu gehörigen p-Werte aus durchgeführtem t-Test. Dargestellt als Median in Millimol pro Liter (%=Prozent, BAL=bronchoalveoläre Lavage; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>„Baseline n. BAL“</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>139,40</td>
<td>138,90</td>
<td>140,70</td>
<td>139,90</td>
<td></td>
</tr>
<tr>
<td>Stunde 6</td>
<td>145,00</td>
<td>143,60</td>
<td>142,70</td>
<td>143,70</td>
<td></td>
</tr>
<tr>
<td>Differenz</td>
<td>+ 5,6</td>
<td>+ 4,7</td>
<td>+ 2</td>
<td>+ 3,8</td>
<td></td>
</tr>
<tr>
<td>% Baseline</td>
<td>104,02</td>
<td>103,38</td>
<td>101,42</td>
<td>102,72</td>
<td></td>
</tr>
<tr>
<td>p-Wert</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td></td>
</tr>
</tbody>
</table>
3.9.2. Kationkonzentration (K⁺)

Abbildung 20: Darstellung der Mediane mit 25. und 75. Percentile der Kaliumkonzentration im arteriellen Blut der Versuchstiere (mmol=Millimol, l=Liter, BAL=bronchoalveolare Lavage, h=Stunde; n=15 je Gruppe).

Ausgehend von einem Wert von ca. 3,2 mmol/l ist in allen vier Gruppen ein kontinuierlicher Anstieg der extrazellulären Kalium-Konzentration über das gesamte Messintervall zu verzeichnen, wobei dieser in der Gruppe 40 am schwächsten und abgestuft bis zur Gruppe 160 am deutlichsten war.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich signifikante Unterschiede zwischen allen vier Gruppen feststellen (p-Werte siehe Tabelle 31).

Tabelle 31: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>0,648</td>
<td>0,104</td>
<td>0,654</td>
</tr>
</tbody>
</table>
Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt ebenfalls signifikante Unterschiede in allen 4 Gruppen.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>3,24</td>
<td>3,32</td>
<td>3,10</td>
<td>3,21</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>4,05</td>
<td>4,85</td>
<td>6,25</td>
<td>7,83</td>
</tr>
<tr>
<td>Differenz</td>
<td>+ 0,81</td>
<td>+ 1,53</td>
<td>+ 3,15</td>
<td>+ 4,62</td>
</tr>
<tr>
<td>% Baseline</td>
<td>125</td>
<td>146,08</td>
<td>201,61</td>
<td>243,93</td>
</tr>
<tr>
<td>p-Wert</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>
3.9.3. Konzentration des ionisierten Kalzium (Ca\(^{2+}\))

Abbildung 21: Darstellung der Konzentration des ionisierten Kalziums im arteriellen Blut der Versuchstiere (mmol=Millimol, l=Liter, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).

Hinsichtlich der extrazellulären Kalzium-Konzentration zeigen die Gruppen 40 und 80, sowie die Gruppen 120 und 160 einen ähnlich gearteten Kurvenverlauf. Während die Gruppe 120 am Ende des Messintervalls nahezu auf Ausgangsniveau verharrt, zeigen die übrigen drei Gruppen einen leichten Abfall.

Betrachtet man die Gruppen über das gesamte Messintervall so lässt sich ein signifikanter Unterschied zwischen Gruppe 40 und 120 feststellen (p-Werte siehe Tabelle 33).

Tabelle 33: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,556</td>
<td>0,026</td>
<td>0,086</td>
<td>0,392</td>
<td>0,694</td>
<td>0,960</td>
</tr>
</tbody>
</table>

Tabelle 34: Vergleich der Konzentration des ionisierten Kalzium im arteriellen Blut der Versuchstiere zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) isoliert für jede der vier Gruppen, sowie der dazu gehörigen p-Werte aus durchgeführtem t-Test. Dargestellt als Median in Millimol pro Liter (=%=Prozent, BAL=bronchoalveoläre Lavage; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>1,53</td>
<td>1,52</td>
<td>1,51</td>
<td>1,57</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>1,43</td>
<td>1,43</td>
<td>1,54</td>
<td>1,46</td>
</tr>
<tr>
<td>Differenz</td>
<td>-0,10</td>
<td>-0,09</td>
<td>+0,03</td>
<td>-0,11</td>
</tr>
<tr>
<td>% Baseline</td>
<td>93,46</td>
<td>94,08</td>
<td>101,99</td>
<td>92,99</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td>0,194</td>
<td>0,330</td>
<td>0,025</td>
</tr>
</tbody>
</table>
3.10 Metabolische Parameter

3.10.1 Laktat

Abbildung 22: Darstellung der Mediane mit 25. und 75. Perzentile der Laktatkonzentration im arteriellen Blut der Versuchstiere (mmol=Millimol, l=Liter, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).

Beginnend bei einer Laktatkonzentration von ca. 1,3 mmol/l zum Zeitpunkt „Baseline nach BAL“ zeigt sich bei allen vier Gruppen ein unterschiedlicher Verlauf. Während in der Gruppe 40 ein Anstieg über den gesamten Messzeitraum, vor allem sehr deutlich in der zweiten Hälfte bis zum dreifachen des Ausgangswertes zu sehen ist, sinkt die Laktatkonzentration in den übrigen drei Gruppen bis etwa zur Stunde 1,5 geringfügig ab. Auf diesem Niveau verbleibt die Gruppe 120, während hingegen in der Gruppe 80 ein mäßiger und in der Gruppe 160 ein deutlicher Anstieg gegen Ende des Messintervalls zu erwähnen ist.

Betrachtet man die Gruppen über das gesamte Messintervall, so lassen sich signifikante Unterschiede zwischen Gruppe 40 und 80, Gruppe 40 und 120, Gruppe 40 und 160, sowie zwischen Gruppe 120 und 160 feststellen (p-Werte siehe Tabelle 35).
Kapitel 3

<table>
<thead>
<tr>
<th>Ergebnisse</th>
</tr>
</thead>
</table>

Tabelle 35: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,001</td>
<td><0,001</td>
<td>0,031</td>
<td>0,273</td>
<td>0,698</td>
<td>0,029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>1,4</td>
<td>1,25</td>
<td>1,25</td>
<td>1,2</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>5,5</td>
<td>1,8</td>
<td>0,9</td>
<td>2,7</td>
</tr>
<tr>
<td>Differenz</td>
<td>+ 4,1</td>
<td>+ 0,55</td>
<td>- 0,35</td>
<td>+ 1,5</td>
</tr>
<tr>
<td>% Baseline</td>
<td>392,86</td>
<td>144</td>
<td>72</td>
<td>225</td>
</tr>
<tr>
<td>p-Wert</td>
<td>< 0,001</td>
<td>0,304</td>
<td>0,025</td>
<td>0,011</td>
</tr>
</tbody>
</table>
3.10.2 Glukose

Abbildung 23: Darstellung der Mediane mit 25. und 75. Perzentile der Glukosekonzentration im arteriellen Blut der Versuchstiere (mg=Milligramm, dl=Deziliter, BAL=bronchoalveolare Lavage, h=Stunde; n=15 je Gruppe).

In allen vier Gruppen ist ein initialer Abfall des Blut-Glukose-Spiegels auf ca. 180 mg/dl bis zur Stunde 0,5 sichtbar. Während die Gruppen 40 und 80 mit leichten Schwankungen ungefähr auf diesem Niveau verharren, zeigt die Gruppe 120 einen leichten Anstieg zur Mitte des Messintervalls, bevor gegen Ende das Niveau der „Baseline nach BAL“ erreicht wird. Im Gegensatz dazu wird in der Gruppe 160 ein deutlich ausgeprägter Anstieg auf bis zu ca. 270 mg/dl sichtbar, dem ein Abfall der Konzentration auf ca. 220 mg/dl gegen Ende des Messintervalls folgt.

Über das gesamte Messintervall zeigen sich signifikante Unterschiede zwischen Gruppe 40 und 160 und zwischen Gruppe 80 und 160 (p-Werte siehe Tabelle 37).
Tabelle 37: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs.160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,875</td>
<td>0,287</td>
<td>0,001</td>
<td>0,695</td>
<td>0,006</td>
<td>0,099</td>
</tr>
</tbody>
</table>

Die isolierte Auswertung der einzelnen Gruppen zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt keine signifikanten Unterschiede.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>206</td>
<td>210,50</td>
<td>200,50</td>
<td>186</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>181</td>
<td>179</td>
<td>182,50</td>
<td>221,50</td>
</tr>
<tr>
<td>Differenz</td>
<td>-25</td>
<td>-31,5</td>
<td>-18</td>
<td>+35,5</td>
</tr>
<tr>
<td>% Baseline</td>
<td>87,86</td>
<td>85,04</td>
<td>91,02</td>
<td>119,09</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,204</td>
<td>0,132</td>
<td>0,148</td>
<td>0,273</td>
</tr>
</tbody>
</table>
3.11 Proteinbestimmung

Abbildung 24: Darstellung der Mediane mit 25. und 75. Perzentile des Gesamtproteins im Serum der Versuchstiere zum Zeitpunkt „Baseline nach BAL“ und zum Zeitpunkt Stunde 6 (g=Gramm, l=Liter, BAL=bronchoalveolare Lavage; n=15 je Gruppe).

Die laborchemische Analyse des Gesamtproteins im Serum der Tiere zum Zeitpunkt „Baseline nach BAL“ zeigt keinen signifikanten Unterschied zwischen den vier Behandlungsgruppen (siehe Tabelle 5).

Zur Stunde 6 ist ein signifikant abgefallenes Gesamtprotein bei allen vier Gruppen zu verzeichnen (siehe Tabelle 39), dass sich zwischen Gruppe 40 und 160 abgestuft präsentiert, ohne sich signifikant zu unterscheiden (p=0,162).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>39,8</td>
<td>39,2</td>
<td>39,8</td>
<td>40,6</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>25,9</td>
<td>26,8</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Differenz</td>
<td>-13,9</td>
<td>-12,4</td>
<td>-12,8</td>
<td>-12,6</td>
</tr>
<tr>
<td>% Baseline</td>
<td>65,08</td>
<td>68,37</td>
<td>67,84</td>
<td>68,97</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
</tr>
</tbody>
</table>

3.12 Hämodynamische Parameter

3.12.1 Herzfrequenz (HF)

Abbildung 25: Darstellung der Mediane mit 25. und 75. Perzentile der Herzfrequenz der Versuchstiere (min=Minute, BAL=bronchoalveolare Lavage, h=Stunde; n=15 je Gruppe).
In allen vier Gruppen ist ein kontinuierlicher Anstieg der Herzfrequenz über das gesamte Messintervall zu beobachten, wobei sich ein Zuwachs zwischen 23 und 45 % zeigt.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich keine signifikante Unterschiede zwischen den vier Behandlungsgruppen feststellen (p-Werte siehe Tabelle 40).

Tabelle 40: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,999</td>
<td>0,922</td>
<td>0,310</td>
<td>0,956</td>
<td>0,372</td>
<td>0,682</td>
</tr>
</tbody>
</table>

Die isolierte Auswertung der einzelnen Gruppen zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt eine signifikante Steigerung der Herzfrequenz in allen vier Gruppen, wobei in der Gruppe 120 der geringste Zuwachs zu verzeichnen ist.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>154</td>
<td>150</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>223</td>
<td>201</td>
<td>196</td>
<td>214</td>
</tr>
<tr>
<td>Differenz</td>
<td>+ 69</td>
<td>+ 51</td>
<td>+ 37</td>
<td>+ 55</td>
</tr>
<tr>
<td>% Baseline</td>
<td>144,81</td>
<td>134</td>
<td>123,27</td>
<td>134,49</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
</tr>
</tbody>
</table>
3.12.2 Mittlerer arterieller Blutdruck (MAD)

Abbildung 26: Darstellung der Mediane mit 25. und 75. Perzentile des mittleren arteriellen Blutdrucks der Versuchstiere (MAD = mittlerer arterieller Blutdruck, mmHg = Millimeter Quecksilbersäule, BAL = bronchoalveoläre Lavage, h = Stunde; n = 15 je Gruppe).

In allen vier Gruppen folgt einem initial starken Abfall des mittleren arteriellen Blutdrucks um ca. 15 mmHg ein zweiter kontinuierlicher leichter Abfall über das gesamte Messintervall.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich keine signifikante Unterschiede zwischen den 4 Gruppen feststellen (p-Werte siehe Tabelle 42).

Tabelle 42: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>1,000</td>
<td>0,810</td>
<td>1,000</td>
<td>0,839</td>
<td>1,000</td>
<td>0,865</td>
</tr>
</tbody>
</table>
Die isolierte Auswertung der einzelnen Gruppen zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) zeigt eine signifikante Abnahme der Werte in allen vier Gruppen.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>53,25</td>
<td>56,78</td>
<td>55,12</td>
<td>58,55</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>38,38</td>
<td>38,60</td>
<td>39,39</td>
<td>37,51</td>
</tr>
<tr>
<td>Differenz</td>
<td>-14,87</td>
<td>-18,18</td>
<td>-15,73</td>
<td>-21,04</td>
</tr>
<tr>
<td>% Baseline</td>
<td>72,08</td>
<td>67,98</td>
<td>71,46</td>
<td>64,06</td>
</tr>
<tr>
<td>p-Wert</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>
3.12.3 Zentraler Venendruck (ZVD)

Abbildung 27: Darstellung der Median mit 25. und 75. Perzentile des zentralen Venendrucks der Versuchstiere (ZVD = zentraler Venendruck, mmHg = Millimeter Quecksilbersäule, BAL = bronchoalveolare Lavage, h = Stunde; n = 15 je Gruppe).

Während die Gruppe 120 über das gesamte Messintervall einen stabilen Verlauf auf dem Niveau der „Baseline nach BAL“ zeigt, gibt es bei den übrigen drei Gruppen einen leichten Anstieg des ZVD.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich keine signifikanten Unterschiede zwischen den vier Gruppen feststellen (p-Werte siehe Tabelle 44).

Tabelle 44: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,242</td>
<td>0,588</td>
<td>0,744</td>
<td>0,920</td>
<td>0,810</td>
<td>0,994</td>
</tr>
</tbody>
</table>

Tabelle 45: Vergleich des zentralen Venendrucks der Versuchstiere zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) isoliert für jede der vier Gruppen, sowie der dazu gehörenden p-Werte aus durchgeführtem t-Test. Dargestellt als Median in Millimeter Quecksilbersäule (%=Prozent, BAL=bronchoalveoläre Lavage; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>5,15</td>
<td>4,37</td>
<td>4,86</td>
<td>4,84</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>6,22</td>
<td>5,54</td>
<td>4,90</td>
<td>5,61</td>
</tr>
<tr>
<td>Differenz</td>
<td>+ 1,07</td>
<td>+ 1,17</td>
<td>+ 0,04</td>
<td>+ 0,77</td>
</tr>
<tr>
<td>% Baseline</td>
<td>120,78</td>
<td>113,99</td>
<td>100,82</td>
<td>115,91</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,001</td>
<td>0,024</td>
<td>0,166</td>
<td>0,396</td>
</tr>
</tbody>
</table>
3.12.4 Herzzeitvolumenindex (HZVI)

Abbildung 28: Darstellung der Mediane mit 25. und 75. Perzentile des Herzzeitvolumenindexes der Versuchstiere (ml=Milliliter, kg=Kilogramm, KG=Körpergewicht, min=Minute, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).

Initial zeigen die Gruppen 80, 120 und 160 einen deutlichen Anstieg des HZVI, während die Gruppe 40 erst gegen Ende des Messintervalls auf gleiches Niveau aufschließt.

Betrachtet man die Gruppen über das gesamte Messintervall so lässt sich ein signifikanter Unterschied zwischen der Gruppe 40 und 120 zeigen (p-Werte siehe Tabelle 46).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,172</td>
<td>0,002</td>
<td>0,175</td>
<td>0,345</td>
<td>0,999</td>
<td>0,519</td>
</tr>
</tbody>
</table>
Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt Signifikanzen in den Gruppen 40, 80 und 120.

Tabelle 47: Vergleich des Herzzeitvolumenindexes der Versuchstiere zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) isoliert für jede der vier Gruppen, sowie der dazu gehörigen p-Werte aus durchgeführtem t-Test. Dargestellt als Median in Milliliter pro Kilogramm Körpergewicht pro Minute (%=Prozent, BAL=bronchoalveoläre Lavage; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>112,78</td>
<td>124,58</td>
<td>130,32</td>
<td>128,59</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>163,93</td>
<td>151,26</td>
<td>164,05</td>
<td>154,80</td>
</tr>
<tr>
<td>Differenz</td>
<td>+ 51,15</td>
<td>+ 26,68</td>
<td>+ 33,73</td>
<td>+ 26,21</td>
</tr>
<tr>
<td>% Baseline</td>
<td>145,35</td>
<td>121,41</td>
<td>125,89</td>
<td>120,38</td>
</tr>
<tr>
<td>p-Wert</td>
<td>< 0,001</td>
<td>0,002</td>
<td>0,004</td>
<td>0,062</td>
</tr>
</tbody>
</table>
3.13 Atmungsmechanik

3.13.1 Compliance (C_i)

Abbildung 29: Darstellung der Mediane mit 25. und 75. Perzentile der dynamischen, inspiratorischen Compliance der gesamten Lunge der Versuchstiere (C_i = dynamische inspiratorische Compliance, ml = Milliliter, $cm\text{H}_2\text{O}$ = Zentimeter Wassersäule, kg = Kilogramm, KG = Körpergewicht, BAL = bronchoalveoläre Lavage, h = Stunde; $n=15$ je Gruppe).

Betrachtet man die Gruppen am Ende des Messintervalls so lassen sich keine signifikanten Unterschiede zwischen den einzelnen Gruppen darstellen ($p=0,422$).

Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt keine signifikanten Unterschiede.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>0,67</td>
<td>0,68</td>
<td>0,63</td>
<td>0,70</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>0,71</td>
<td>0,52</td>
<td>0,50</td>
<td>0,50</td>
</tr>
<tr>
<td>Differenz</td>
<td>+0,04</td>
<td>-0,16</td>
<td>-0,13</td>
<td>-0,20</td>
</tr>
<tr>
<td>% Baseline</td>
<td>105,97</td>
<td>76,47</td>
<td>79,37</td>
<td>71,43</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,480</td>
<td>0,119</td>
<td>0,073</td>
<td>0,058</td>
</tr>
</tbody>
</table>

3.13.2 Mittlerer Atemwegsdruck (Paw)

Abbildung 30: Darstellung der Mediane mit 25. und 75. Perzentile des Atemwegsdrucks der Versuchstiere (Paw=Atemwegsdruck, cmH₂O=Zentimeter Wassersäule, BAL=bronchoalveolare Lavage, h=Stunde; n=15 je Gruppe).
Nach einem leichten Anstieg des mittleren Atemwegsdrucks in allen vier Gruppen bis etwa zur Stunde 1, blieb dieser bei den Gruppen 120 und 160 nahezu unverändert über das gesamte Messintervall. Ebenfalls einen nahezu unveränderten Verlauf zeigt die Gruppe 80 auf einem gering erhöhten Ausgangsniveau, während in der Gruppe 40 der Paw kontinuierlich anstieg und zuletzt um mehr als 80 % über dem Wert der „Baseline nach BAL“ lag.

Bei der Betrachtung der Gruppen über das gesamte Messintervall fanden wir signifikante Unterschiede zwischen der Gruppe 40 und den übrigen drei Gruppen, sowie zwischen der Gruppe 80 und 120 (p-Werte siehe Tabelle 49).

Tabelle 49: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,034</td>
<td>0,001</td>
<td>0,001</td>
<td>0,035</td>
<td>0,084</td>
<td>0,984</td>
</tr>
</tbody>
</table>

Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt einen signifikanten, unterschiedlich ausgeprägten Anstieg in allen vier Gruppen, wobei die Gruppe 120 den geringsten Anstieg verzeichnet.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>5,76</td>
<td>5,44</td>
<td>5,63</td>
<td>5,44</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>10,61</td>
<td>7,95</td>
<td>7,00</td>
<td>7,08</td>
</tr>
<tr>
<td>Differenz</td>
<td>+ 4,85</td>
<td>+ 2,51</td>
<td>+ 1,37</td>
<td>+ 1,64</td>
</tr>
<tr>
<td>% Baseline</td>
<td>184,20</td>
<td>146,14</td>
<td>124,33</td>
<td>130,15</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
</tr>
</tbody>
</table>
3.13.3 Öosphagusdruck \((Pe)\)

Abbildung 31: Darstellung der Mediane mit 25. und 75. Perzentile des Öosphagusdrucks der Versuchstiere. \((Pe=Öosphagusdruck, \; \text{cmH}_2\text{O}=\text{Zentimeter Wassersäule, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe})\)

Alle vier Gruppen zeigen bei einem tendenziell leichten Anstieg des Öosphagusdrucks einen homogenen Kurvenverlauf um einen Wert von ca. 7 mmHg, ohne signifikanten Unterschied beim Vergleich der Gruppen über das gesamte Messintervall (p-Werte siehe Tabelle 51).

Tabelle 51: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,444</td>
<td>0,995</td>
<td>0,956</td>
<td>0,584</td>
<td>0,754</td>
<td>0,992</td>
</tr>
</tbody>
</table>

Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt sowohl Signifikanz in der Gruppe 40 als auch in der Gruppe 120.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>7,19</td>
<td>6,76</td>
<td>7,36</td>
<td>7,41</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>8,16</td>
<td>7,52</td>
<td>7,82</td>
<td>7,87</td>
</tr>
<tr>
<td>Differenz</td>
<td>+0,97</td>
<td>+0,76</td>
<td>+0,46</td>
<td>+0,46</td>
</tr>
<tr>
<td>% Baseline</td>
<td>113,49</td>
<td>111,24</td>
<td>106,25</td>
<td>106,21</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td>0,066</td>
<td><0,001</td>
<td>0,405</td>
</tr>
</tbody>
</table>

3.13.4 Beatmungs frequenz (f)

Abbildung 32: Darstellung der Mediane mit 25. und 75. Perzentile der Beatmungs frequenz der Versuchstiere. (min=Minute, h=Stunde; n=15 je Gruppe)

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich keine signifikanten Unterschiede zwischen den einzelnen Gruppen feststellen (p=0,306).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
</table>

3.14 Intrazerebrale Perfusion / intrakranieller Druck

3.14.1 Intrazerebrale Perfusion

Abbildung 33: Darstellung der Mediane mit 25. und 75. Perzentile der intrazerebralen Perfusionsrate der Versuchstiere (%=Prozent, BAL=bronchoalveolare Lavage, h=Stunde; n=6 für Gruppe 40, n=4 für Gruppe 80, n=5 für Gruppe 120 und 160).

Um den Verlauf der intrazerebralen Perfusionsrate zu untersuchen wurde jeweils der zum Zeitpunkt „Baseline nach BAL“ festgestellte Wert als Ausgangspunkt mit 100 % festgesetzt. Davon ausgehend sind die prozentualen Abweichungen über den Verlauf des Messintervalls abgebildet, die sich nicht signifikant zwischen den vier Gruppen unterscheiden (p=0,951).
3.14.2 Intrakranieller Druck

Abbildung 34: Darstellung der Mediane mit 25. und 75. Perzentile des intrakraniellen Drucks der Versuchstiere. (ICP=intrakranielle Druck, %=Prozent, BAL=bronchoalveolare Lavage, h=Stunde; n=4 für Gruppe 40 und 120, n=2 für Gruppe 80, n=3 für Gruppe 160)

Um den Verlauf des intrakraniellen Drucks zu untersuchen wurde jeweils der zum Zeitpunkt „Baseline nach BAL“ festgestellte Wert als Ausgangspunkt mit 100 % festgesetzt. Davon ausgehend sind die prozentualen Abweichungen über den Verlauf des Messintervalls abgebildet, die sich nicht signifikant zwischen den vier Gruppen unterscheiden (p=0,411).
3.15 Blutproben

3.15.1 Hämatokritwert (Hk)

Abbildung 35: Darstellung der Mediane mit 25. und 75. Perzentile des Hämatokritwertes der Versuchstiere (Hk= Hämatokritwert, %=Prozent, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).

Alle vier Gruppen zeigen einen leichten Abfall des Hämatokritwertes über das gesamte Messintervall, der bei den Gruppen 40, 80 und 120 etwas deutlicher als bei der Gruppe 160 ausfällt.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich signifikante Unterschiede zwischen der Gruppe 40 und 160, sowie zwischen der Gruppe 80 und 160 darstellen (p-Werte siehe Tabelle 54).

Tabelle 54: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>1.000</td>
<td>0.828</td>
<td>0.007</td>
<td>0.781</td>
<td>0.006</td>
<td>0.068</td>
</tr>
</tbody>
</table>
Die Auswertung zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt signifikante Unterschiede in allen vier Gruppen.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>35,4</td>
<td>33</td>
<td>35,4</td>
<td>35</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>30,7</td>
<td>30,7</td>
<td>31,1</td>
<td>32,9</td>
</tr>
<tr>
<td>Differenz</td>
<td>-4,7</td>
<td>-2,3</td>
<td>-4,3</td>
<td>-2,1</td>
</tr>
<tr>
<td>% Baseline</td>
<td>86,72</td>
<td>93,03</td>
<td>87,85</td>
<td>94</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td>0,003</td>
<td>0,007</td>
<td>0,012</td>
</tr>
</tbody>
</table>

3.15.2 Hämoglobinwert (Hb)

Abbildung 36: Darstellung der Mediane mit 25. und 75. Perzentile des Hämoglobinwerts der Versuchstiere (Hb=Hämoglobinwert, g=Gramm, dl=Deziliter, BAL=bronchoalveolare Lavage, h=Stunde; n=15 je Gruppe).
Alle vier Gruppen zeigen einen kontinuierlich ausgeprägten homogenen Abfall der Hämoglobinkonzentration.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich keine signifikanten Unterschiede zwischen den einzelnen Gruppen ausmachen (p-Werte siehe Tabelle 56).

Tabelle 56: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,981</td>
<td>0,914</td>
<td>0,728</td>
<td>0,993</td>
<td>0,493</td>
<td>0,339</td>
</tr>
</tbody>
</table>

Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt Signifikanzen in allen vier Gruppen.

Tabelle 57: Vergleich des Hämoglobinwerts der Versuchstiere zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) isoliert für jede der vier Gruppen, sowie der dazu gehörigen p-Werte aus durchgeführtem t-Test. Dargestellt als Median in Gramm pro Deziliter (%=Prozent, BAL=bronchoalveoläre Lavage; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>10,3</td>
<td>10</td>
<td>10,6</td>
<td>10,3</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>9</td>
<td>8,7</td>
<td>8,6</td>
<td>8,8</td>
</tr>
<tr>
<td>Differenz</td>
<td>- 1,3</td>
<td>- 1,3</td>
<td>- 2</td>
<td>- 1,5</td>
</tr>
<tr>
<td>% Baseline</td>
<td>87,38</td>
<td>87</td>
<td>81,13</td>
<td>85,44</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
</tr>
</tbody>
</table>
3.15.3 Erythrozytenanzahl

Abbildung 37: Darstellung der Medianen mit 25. und 75. Perzentile der Erythrozytenanzahl der Versuchstiere (µl=Mikroliter, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).

Alle vier Gruppen zeigen einen kontinuierlich ausgeprägten homogenen Abfall der Erythrozytenanzahl.

Betrachtet man die Gruppen über das gesamte Messintervall so lassen sich keine signifikanten Unterschiede zwischen den einzelnen Gruppen ausmachen (p-Werte siehe Tabelle 58).

Tabelle 58: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,972</td>
<td>1,000</td>
<td>0,356</td>
<td>0,964</td>
<td>0,168</td>
<td>0,377</td>
</tr>
</tbody>
</table>
Die Auswertung zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt einen signifikanten Abfall in allen vier Gruppen.

Tabelle 59: Vergleich der Erythrozytenanzahl der Versuchstiere zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) isoliert für jede der vier Gruppen, sowie der dazu gehörigen p-Werte aus durchgeführtem t-Test. Dargestellt als Median in 100.000 pro Mikroliter (%=Prozent, BAL=bronchoalveoläre Lavage; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>4,87</td>
<td>4,66</td>
<td>5,02</td>
<td>4,96</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>4,10</td>
<td>3,99</td>
<td>4,04</td>
<td>4,30</td>
</tr>
<tr>
<td>Differenz</td>
<td>-0,77</td>
<td>-0,67</td>
<td>-0,98</td>
<td>-0,66</td>
</tr>
<tr>
<td>% Baseline</td>
<td>84,19</td>
<td>85,62</td>
<td>80,48</td>
<td>86,69</td>
</tr>
<tr>
<td>p-Wert</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
</tr>
</tbody>
</table>

3.15.4 Thrombozytenanzahl

![Diagramm der Thrombozytenanzahl](image)

Abbildung 38: Darstellung der Mediane mit 25. und 75. Percentile der Thrombozytenanzahl der Versuchstiere (µl=Mikroliter, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).
Ausgehend von einer nahezu identischen Thrombozytenanzahl zum Zeitpunkt „Baseline nach BAL“ von ca. 228 \([10^3/\mu l]\), die bei den Gruppen 80, 120 und 160 vorliegt, zeigen die Gruppen 80 und 120 einen homogenen kontinuierlichen Abfall auf einen Wert von ca. 190 \([10^3/\mu l]\). Einen ähnlichen Verlauf bietet die Gruppe 40 bei allerdings nach unten verschobener Kurve, resultierend aus erniedrigten Start bzw. Endpunkt. Die Gruppe 160 fällt, nach leichtem Anstieg bis ca. zur Stunde 2, ebenfalls kontinuierlich bis gegen Ende des Messintervalls, erreicht allerdings einen etwas höheren Endpunkt als die beiden erstgenannten Gruppen.

Betrachtet man die Gruppen über das gesamte Messintervall so lässt sich ein signifikanter Unterschied zwischen den Gruppe 40 und 160 ausmachen (p-Werte siehe Tabelle 60).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,095</td>
<td>0,198</td>
<td>0,009</td>
<td>0,984</td>
<td>0,789</td>
<td>0,572</td>
</tr>
</tbody>
</table>

Die isolierte Auswertung der einzelnen Gruppen hinsichtlich signifikanter Unterschiede zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) ergibt Signifikanzen in allen vier Gruppen.

Tabelle 61: Vergleich der Thrombozytenanzahl der Versuchstiere zwischen dem Zeitpunkt „Baseline nach BAL“ und dem Ende des Messintervalls (Stunde 6) isoliert für jede der vier Gruppen, sowie der dazu gehörigen p-Werte aus durchgeführtem t-Test. Dargestellt als Median in 100.000 pro Mikroliter (%=Prozent, BAL=bronchoalveoläre Lavage; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>189</td>
<td>230</td>
<td>225</td>
<td>228</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>164</td>
<td>188</td>
<td>191</td>
<td>203</td>
</tr>
<tr>
<td>Differenz</td>
<td>-25</td>
<td>-42</td>
<td>-34</td>
<td>-25</td>
</tr>
<tr>
<td>% Baseline</td>
<td>86,77</td>
<td>81,74</td>
<td>84,89</td>
<td>89,04</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,004</td>
<td>0,005</td>
<td>0,003</td>
<td>0,003</td>
</tr>
</tbody>
</table>
3.15.5 Leukozyten

Abbildung 39: Darstellung der Mediane mit 25. und 75. Percentile der Leukozytenanzahl der Versuchstiere (μl=Mikroliter, BAL=bronchoalveoläre Lavage, h=Stunde; n=15 je Gruppe).

Ausgehend von einer nahezu identischen Anzahl der Leukozyten im Blut der Versuchstiere bei allen vier Gruppen, ist bei den Gruppen 80, 120 und 160 ein ähnlich gelagerter kontinuierlicher Anstieg zu verzeichnen. Im Gegensatz dazu zeigt die Gruppe 40 einen nahezu auf dem Ausgangsniveau basierenden konstanten Verlauf.

Betrachtet man die Gruppen über das gesamte Messintervall so lässt sich kein signifikanter Unterschied zwischen den einzelnen Gruppen feststellen. Trotzdem wird die Tendenz zu höheren Leukozytenzahlen bei den Gruppen 80, 120 und 160 im Gegensatz zur fast unveränderten Anzahl bei der Gruppe 40 deutlich (p-Werte siehe Tabelle 62).
Tabelle 62: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,204</td>
<td>0,129</td>
<td>0,867</td>
<td>0,995</td>
<td>0,632</td>
<td>0,487</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>3,43</td>
<td>3,43</td>
<td>3,32</td>
<td>3,43</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>2,98</td>
<td>4,41</td>
<td>4,58</td>
<td>4,47</td>
</tr>
<tr>
<td>Differenz</td>
<td>- 0,45</td>
<td>+ 0,98</td>
<td>+ 1,26</td>
<td>+ 1,04</td>
</tr>
<tr>
<td>% Baseline</td>
<td>86,88</td>
<td>128,57</td>
<td>137,95</td>
<td>130,32</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,813</td>
<td>0,023</td>
<td>0,009</td>
<td>0,014</td>
</tr>
</tbody>
</table>
3.15.6 Neutrophile Granulozyten

Abbildung 40: Darstellung der Mediane mit 25. und 75. Perzentile der absoluten Anzahl neutrophiler Granulozyten der Versuchstiere. (µl=Mikroliter, BAL=bronchoalveolare Lavage, h=Stunde; n=15 je Gruppe)

Ausgehend von einer nahezu identischen Anzahl der neutrophilen Granulozyten im Blut der Versuchstiere bei allen vier Gruppen, ist bei den Gruppen 80, 120 und 160 ein ähnlich gelagerter kontinuierlicher Anstieg zu verzeichnen. Im Gegensatz dazu zeigt die Gruppe 40 einen nahezu auf dem Ausgangsniveau basierenden konstanten Verlauf.

Betrachtet man die Gruppen über das gesamte Messintervall so lässt sich ein signifikanter Unterschied zwischen der Gruppe 40 und den übrigen drei Gruppen konstatieren (p-Werte siehe Tabelle 64).

Tabelle 64: p-Werte der Vergleiche über das gesamte Messintervall zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,043</td>
<td>0,002</td>
<td>0,016</td>
<td>0,610</td>
<td>0,961</td>
<td>0,898</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Baseline n. BAL“</td>
<td>1,35</td>
<td>1,40</td>
<td>1,27</td>
<td>1,66</td>
</tr>
<tr>
<td>Stunde 6</td>
<td>1,55</td>
<td>2,39</td>
<td>2,49</td>
<td>2,74</td>
</tr>
<tr>
<td>Differenz</td>
<td>+0,2</td>
<td>+0,99</td>
<td>+1,22</td>
<td>+1,08</td>
</tr>
<tr>
<td>% Baseline</td>
<td>114,81</td>
<td>170,71</td>
<td>196,06</td>
<td>165,06</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,091</td>
<td><0,001</td>
<td><0,001</td>
<td>0,004</td>
</tr>
</tbody>
</table>
3.16 Unterstützung Hämodynamik / Kompensation der Azidose

3.16.1 Volumenzufuhr

Abbildung 41: Darstellung der Mediane mit 25. und 75. Perzentile der zugeführten Menge an Natriumchloridlösung zur Unterstützung der Hämodynamik der Versuchstiere (NaCl=Natriumchlorid, ml=Milliliter, kg=Kilogramm, KG=Körpergewicht; n=15 je Gruppe).

Bei instabilen Kreislaufverhältnissen wurde den Tieren gemäß Protokoll isotone Natriumchloridlösung intravenös verabreicht. Diese Menge an verabreichtem Volumen war in der Gruppe 40 am höchsten, in Gruppe 80 und 120 ca. ein drittel niedriger und in der Gruppe 160 mit ca. einem drittel am geringsten (siehe Tabelle 66). Der Unterschied zwischen Gruppe 40 und 120, sowie zwischen Gruppe 40 und 160 war signifikant (p-Werte siehe Tabelle 67).

Tabelle 66: Menge der Natriumchloridlösung als Median mit 25. und 75. Perzentile (NaCl=Natriumchlorid, ml=Milliliter, kg=Kilogramm, KG=Körpergewicht; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl [ml/kg KG]</td>
<td>30,61 (20,91 - 42,48)</td>
<td>20,13 (9,87 - 36,71)</td>
<td>19,93 (10,17 - 21,16)</td>
<td>10,49 (4,89 - 26,87)</td>
</tr>
</tbody>
</table>
Kapitel 3
Ergebnisse

Tabelle 67: p-Werte der Vergleiche zwischen den vier Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40 vs. 80</th>
<th>40 vs. 120</th>
<th>40 vs. 160</th>
<th>80 vs. 120</th>
<th>80 vs. 160</th>
<th>120 vs. 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,163</td>
<td>0,008</td>
<td>0,013</td>
<td>0,622</td>
<td>0,714</td>
<td>0,999</td>
</tr>
</tbody>
</table>

3.16.2 Dopamingabe

Abbildung 42: Darstellung der Mediane mit 25. und 75. Perzentile der zugeführten Menge an Dopamin zur Unterstützung der Hämodynamik der Versuchstiere (ml=Milliliter, kg=Kilogramm, KG=Körpergewicht; n=15 je Gruppe).

Bei instabilen Kreislaufverhältnissen wurde gemäß Protokoll Dopamin, zusätzlich zur Volumengabe, verabreicht. Die Dosis war in Gruppe 80 am höchsten, in Gruppe 120 und 160 am niedrigsten, ohne signifikante Unterschiede (p=0,080).

Tabelle 68: Menge des Dopamins als Median mit 25. und 75. Perzentile (NaCl=Natriumchlorid, ml=Milliliter, kg=Kilogramm, KG=Körpergewicht; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamin</td>
<td>[ml/kg KG]</td>
<td>[ml/kg KG]</td>
<td>[ml/kg KG]</td>
<td>[ml/kg KG]</td>
</tr>
<tr>
<td></td>
<td>(0,98 - 7,54)</td>
<td>(1,48 - 10,31)</td>
<td>(0,36 - 4,23)</td>
<td>(0 - 4,74)</td>
</tr>
</tbody>
</table>
3.16.3 Kompensation der Azidose

Zum Ausgleich der Azidose wurde den Tieren gemäß Protokoll Natriumhydrogencarbonat bei einem base excess kleiner -10 verabreicht. Beim Vergleich der jeweils zugeführten Menge zeigte sich, bei tendenziell niedrigeren Werten in der Gruppe 80, kein signifikanter Unterschied zwischen den vier Gruppen (p=0,757).

Tabelle 69: Menge der verabreichten Natriumchloridlösung als Median mit 25. und 75. Perzentile (NaHCO₃=Natriumhydrogencarbonat, mmol=Millimol, kg=Kilogramm, KG=Körpergewicht; n=15 je Gruppe).

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaHCO₃</td>
<td>3,31</td>
<td>1,82</td>
<td>3,19</td>
<td>3,29</td>
</tr>
<tr>
<td>[mmol/kg KG]</td>
<td>(1,70 - 4,28)</td>
<td>(0,85 - 3,48)</td>
<td>(1,71 - 3,47)</td>
<td>(1,69 - 3,67)</td>
</tr>
</tbody>
</table>
4. Diskussion

Ziel dieser Studie war die Auswirkung von mechanischer Beatmung mit verschiedenen Tidalvolumina in Assoziation mit verschiedener Ausprägung von Hyperkapnie auf den Grad der Lungenprotection im Surfactantmangel-Modell am Kaninchen zu untersuchen. Es konnte gezeigt werden, dass die Reduktion des Tidalvolumens von 8\,-\,10 \,ml/kg \,KG bei Normokapnie auf 4\,-\,5 \,ml/kg \,KG in Assoziation mit leichter hyperkapnischer Azidose (paCO\textsubscript{2} von 80 mm Hg) die Lungenschädigung durch mechanische Beatmung reduziert. Eine weitere Reduktion des Tidalvolumens unter Inkaufnahme einer stärker ausgeprägten hyperkapnischer Azidose war nicht mit einer weiter zunehmenden Lungenprotection verbunden. Weiterhin wurden Daten zum Einfluss von verschiedengradig ausgeprägter hyperkapnischer Azidose auf den Organismus gewonnen.

4.1 Gründe für die Anwendung des vorliegenden Tiermodells

Außerdem liegen unserer Arbeitsgruppe Kenntnisse hinsichtlich der Methodik, sowie der Instrumentierung aus vorangegangenen Studien vor, die bei der Durchführung der aktuellen Untersuchung hilfreich waren (Hummler et al. 2003).

4.2 Diskussion der Messwerte

4.2.1 Direkte Zeichen der Lungenschädigung

Der Quotient des Feucht- / Trockengewichts, das Ergebnis der makroskopischen bzw. histologischen Analyse des Lungengewebes, sowie die Proteinkonzentration, die Anzahl der Zellen, sowie deren zelluläre Differenzierung in der bronchoalveolären Lavage-Flüssigkeit wurden als Parameter zur Quantifizierung der Lungenschädigung verwendet.

4.2.1.1 Quotient Feucht- / Trockengewicht

Das Feucht- / Trockengewicht ist ein einfach zu erhebender, verlässlicher Parameter für die Ausprägung eines alveolären und interstitiellen Ödems, welches in der frühen Phase der Pathogenese der Lungenschädigung eine zentrale Rolle spielt. So konnte nachgewiesen werden, dass nach rund 20 Minuten schädigender konventioneller Beatmung die Permeabilität im Gefäßbett der surfactantlavagierten Lunge drastisch zunimmt. Durch Messung des alveolären Ödems kann dann der Grad der Lungenschädigung quantifiziert werden. In vielen Studien wird als lungenschädigende Beatmung ein Tidalvolumen von 15 bis 20 ml/kg KG angewendet, wobei die in unserer Kontrollgruppe verwendeten 8 - 10 ml/kg KG schon selbst als lungenprotektiv angesehen werden. Trotzdem konnte in unserer Untersuchung durch die weitere Reduktion des Tidalvolumen auf 4 - 5 ml/kg KG und darunter ein Schutz bezüglich der Entstehung eines alveolären und interstitiellen Ödems im Vergleich zur normoventilierten Kontrollgruppe gezeigt werden.

Die Tatsache, dass der zunächst durch die mechanische Beatmung verursachte Lungenschaden sich nicht linear zum applizierten Volumen in den Gruppen 80, 120 und 160 reduziert hat, könnte auf das Vorhandensein eines Schwellenwertes hindeuten, ab dem ein messbarer Lungenschaden auftritt.
Es wird in dieser Studie außerdem veranschaulicht, dass einige Stunden konventionelle Beatmung ausreichend sind, eine nachhaltige und sicher nur über prolongierte Zeiträume reversible Lungenschädigung zu erzeugen.

4.2.1.2 Makroskopische Beurteilung des Lungengewebes

Das Auftreten dieser sichtbaren Veränderungen ist das makroskopische Korrelat zu den entsprechenden histologischen Veränderungen und ihren Konsequenzen.
und konnte auch in anderen Untersuchungen verifiziert werden (Dreyfuss et al. 1998, Moller et al. 1999).

4.2.1.3 Mikroskopische Beurteilung des Lungengewebes

Atelektasen in den abhängigen Lungenpartien bei langzeitbeatmeten Patienten vorzubeugen.

4.2.1.4 Proteinbestimmung in der BAL und im Serum

Die Bestimmung der Proteinkonzentration im Serum ergibt ein erwartetes gegenläufiges Bild, das sich entsprechend der Proteinkonzentration in der BAL
und deren zeitlichen Ablaufs darstellt; d.h. je höher die Proteinkonzentration in der geschädigten Lunge, desto niedriger ist sie im Blutserum.

4.2.1.5 Zellzahl und Zelluläre Differenzierung in der BAL

Ebenfalls spiegelt sich die deutlich ausgeprägtere Lungenschädigung in der normokapnisch, konventionell beatmeten Behandlungsgruppe (Gruppe 40) bei Betrachtung der Zelldifferenzierung wieder. Während sich in der initial
durchgeführten BAL keine signifikanten Unterschiede zwischen den vier Behandlungsgruppe ergaben und die ermittelte Zelldifferenzierung das bei einer gesunden Lunge zu erwartende Bild ergab, so zeigt sich in der terminalen BAL ein völlig konträrer Befund. Der Anteil der nachgewiesenen Granulozyten ist um den Faktor 13 angestiegen, was sich als Zeichen der inzwischen massiv ausgeprägt ablaufenden inflammatorischen Prozesse darstellt.

4.2.2 Blutgasanalysen und Pufferung der Azidose

Die Entwicklung des Kolendioxidpartialdrucks zeigt das erwartete Bild einer kontrollierten Größe. Der Ziel-paCO₂ gemäß der Gruppenzugehörigkeit war ab ca. Stunde 1 erreicht und wurde bis zum Abschluss des 6 h-Messintervalls auf konstantem Niveau, mittels Regulation der Atemfrequenz in sehr engen Zielgrenzen eingehalten.

Die Betrachtung des Sauerstoffpartialdrucks bzw. dessen Entwicklung im Verlauf des 6 h-Messintervalls zeigt deutliche Unterschiede zwischen den einzelnen Gruppen, insbesondere zwischen der Gruppe 40 und den drei Hyperkapnie-Gruppen. Um eine detaillierte Bewertung des Sauerstoffpartialdrucks vorzunehmen ist die Kenntnis, der bei lungengesunden Tieren zu erwartenden paO₂-Werte unerlässlich. Die klinisch vereinfachte alveoläre Gasgleichung paO₂ = FiO₂ x (PB - 47) - paCO₂ / RQ [mmHG] liefert einen näherungsweisenden Wert von ca. 653, 606, 559, bzw. 512 mmHG für die einzelnen Gruppen und macht deutlich, dass ein erhöhter paCO₂ eine zwangsweise zur erwartende Verminderung des paO₂ mit sich bringt. Das heißt, dass unter hyperkapnischen Bedingungen zwangsläufig der maximal erreichbare paO₂ sinkt. Der angegebene Wertebereich wurde vor Induktion der Lungenschädigung, also vor Durchführung der initialen BAL problemlos erreicht.

Bei allen Gruppen (80, 120, 160), die infolge der Hyperkapnie und der Verwendung von reduziertem Tidalvolumen eine geringer ausgeprägte Inflammationsreaktion zeigten, konnten wir eine deutliche Verbesserung des Gasaustauschs, gemessen am Sauerstoffpartialdruck, sowie an der Sauerstoffsättigung, trotz Hyperkapnie nachweisen. Außerdem konnten wir zeigen, dass sich eine weitere Reduktion des Tidalvolumens nicht in einer besseren Oxygenierung, gemessen am paO₂, niederschlägt. Möglicherweise lässt

In Analogie zur erzeugten Hyperkapnie in den Gruppe 80, 120 und 160 stellt sich der pH-Wert, als negativ dekadischer Logarithmus der H$^+$-Konzentration wie erwartet in einem Bereich kleiner 7,1 dar. Es kann somit auf Grund der Genese der Störung des Säure-Basen-Haushaltes, nämlich der alveolären Hypoventilation von einer nachfolgenden auftretenden respiratorischen Azidose gesprochen werden, die umso ausgeprägter zu Tage tritt, je stärker die Ausprägung der Hyperkapnie vorliegt. Die in der Henderson-Haselbalch-Gleichung (CO$_2$ + H$_2$O ↔ H$_2$CO$_3$ ↔ HCO$_3^-$ + H$^+$) beschriebene gesetzmäßige Beziehung zwischen pH-Wert, Bikarbonatkonzentration und CO$_2$-Partialdruck kann hierbei als Erklärungsmuster herangezogen werden.

Für die unter Normokapnie-Bedingungen (Gruppe 40) auftretende Azidose, auch wenn gleich ihre Ausprägung deutlich geringer als bei den übrigen Gruppen ausfällt, sind zwei Stoffwechselwege ursächlich, die bei anaeroben Bedingungen beschritten werden und bei denen es zu einem Anfall saurer Valenzen kommt.

Als Kompensation der azidotischen Stoffwechselsituation resultiert bei Verbrauch der Pufferbasen ein zunehmendes Basendefizit.

Außerdem trägt die Verschiebung des Albumins, als Hauptbestandteil der Plasmaproteine, im zeitlichen Verlauf des Messintervalls ebenfalls zu einer Verminderung der Gesamtpufferbasen und damit zu einem fortschreitenden negativen base excess bei.

4.2.3 Sauerstoffstatus

Der allostereische Effekt und die stufenweise Bindungsaffinität des Hämoglobinmoleküls sind für den sigmoidalen Verlauf der Sauerstoffbindungskurve verantwortlich, welchem eine große biologische

keine zusätzliche Verbesserung in diesem Punkt erbringen kann. Es wäre allerdings denkbar, dass in einem Modell einer noch ausgeprägteren Lungenschädigung mit niedrigeren p_{aO_2}-Werten Unterschiede in der Sauerstoffsättigung zwischen den Hyperkapniegruppen nachweisbar wären.

Um allerdings eine detailliertere Aussage über die Sauerstoffversorgung im peripheren Gewebe treffen zu können, ist die Betrachtung des Sauerstoffangebotes (DO_2), das Produkt aus Sauerstoffgehalt und Herzzeitvolumen (Berechnung siehe Kapitel 2.9.2), als zentrale Größe wichtig (Köhler 2005). Normalerweise ist der Anteil des physikalisch gelösten Sauerstoffs vernachlässigbar gering, er wurde jedoch im vorliegenden Fall korrekt erfasst in die Berechnung miteinbezogen. Es wird deutlich, dass alle Hyperkapniegruppen über ein deutlich vergrößertes Sauerstoffangebot verfügen als die normokapnisch geführte Gruppe 40. Dies lässt sich anhand dem erhöhten Herzzeitvolumen, sowie der verbesserten Oxygenierung, sichtbar an arterieller Sauerstoffsättigung und Sauerstoffpartialdruck, erklären. Beide Einfluss nehmenden Parameter waren in den, der Hyperkapnie ausgesetzten, Gruppen 80, 120 und 160 verbessert.

Einschränkend ist bei der Beurteilung der arterio-venösen Sauerstoffdifferenz anzumerken, dass aus methodischen bzw. technischen Gründen keine Bestimmung der gemischtvenösen Sättigung erfolgen konnte, stattdessen aber die mittels eines zentralen Venenkatheters bestimmte zentralvenöse Sättigung Verwendung fand.

In unserer Studie wurde über das 6-stündige Messintervall reiner Sauerstoff (FiO$_2$ = 1,0) als Atemgas zugeführt. In der Zusammenschau der Ergebnisse ist eine mehr als zufriedenstellende Oxygenierung bei Verwendung einer permissiven Hyperkapnie, im Gegensatz zur normokapnischen Gruppe, mit paCO$_2$-Werten von 80 mmHg gegeben, so dass hier die Möglichkeit bestanden hätte, bei paO$_2$-Werten von über 300 mmHg den Sauerstoffanteil im Atemgas zu reduzieren. Letzteres wurde aber aus Gründen der einfacheren Vergleichbarkeit der Gasaustauschparameter nicht vorgenommen. Im Gegensatz dazu zeigt die Tatsache, dass trotz eines FiO$_2$ von 1,0 in der Gruppe 40 keine ausreichende Oxygenierung möglich zu sein scheint, den Schweregrad der Lungenschädigung eindrücklich an. Außerdem wäre es denkbar, dass die nachgewiesene Protektion der Lunge unter reduziertem FiO$_2$ noch ausgeprägter ausfallen würde.
4.2.4 Elektrolyte

Der gleichförmige Anstieg der extrazellulären Natrium-Konzentration zeigt sich in allen vier Gruppen über das gesamte Messintervall, wobei er sich nicht signifikant zwischen den Gruppen unterscheidet und sich mit der Zuführung von NaCl-Lösung als Erhaltungsinfusion, als Ausgleich für Volumenverluste durch Blutentnahmen, sowie mit der Gabe von NaHCO\(_3\) zum Ausgleich der azidotischen Stoffwechsellage erklären lässt. Des Weiteren ist er auf die erfolgte Volumengabe von NaCl-Lösung zur hämodynamischen Unterstützung zurück zu führen, was außerdem den tendenziell höchsten Anstieg in der Gruppe 40 nachvollziehbar macht, da hier die höchste Menge an Volumen appliziert wurde, während dessen sich die anderweitigen NaCl-Gaben gleich auf alle Behandlungsgruppen verteilen.

Einfluss auf die veränderte Konzentration des ionisierten Kalziums, nehmen mehrere Faktoren. Verdünnungseffekte sind auch hier an erster Stelle zu erwähnen, was mit sinkenden Werten einhergeht. Dem gegenüber steht die pH-Wert-abhängige Veränderung der ionisierten Kalziumkonzentration aufgrund der
veränderten Bindungskapazität des Albumins. Diese sinkt bei niedrigeren pH-Werten, infolge dessen steigt die Konzentration des freien ionisierten Kalziums. Hierbei sind aber auch die gefallenen Konzentrationen des Albumins bzw. des Gesamtproteins zu Beginn und am Ende des 6 h-Messintervall an sich zu nennen.

4.2.5 Metabolische Parameter

Hyperkapnie bis zu einem \(\text{paCO}_2 \) von 150 mmHg eine Verbesserung der Mikrozirkulation zeigen konnten (Komori et al. 2007), sowie weitere Untersuchungen, die ebenfalls reduzierte Laktat-Konzentrationen unter Vorliegen einer Hyperkapnie nachweisen konnten (Costello et al. 2009, Wang et al. 2008).

\textbf{4.2.6 Hämodynamische Parameter, sowie deren Unterstützung mittels Volumengabe und Dopaminapplikation}

Eine Zunahme der \textit{Herzfrequenz} lässt sich bei Anwendung einer hyperkapnischen Azidose durch eine vermehrte Ausschüttung von Katecholaminen, welche positive inotrope und positive chronotrope Wirkungen zur Folge haben, zeigen (Wang et al. 2008, Kavanagh et al. 2006, Mas et al. 2000, Brofman et al. 1990). Diese Tachykardie ist ebenfalls in Zusammenhang mit der gemäß Protokoll erfolgten Applikation von Dopamin zur Unterstützung der Hämodynamik zu bringen. Dopamin, ein natürlich vorkommendes Katecholamin, führt über die Wirkung an \(\alpha \)-Rezeptoren nicht nur zur gewünschten peripheren Vasokonstriktion, sowie zu einer positiv inotropen Wirkung, sondern auch als Nebenwirkung zu einer \(\beta_1 \)-Rezeptor vermittelten Zunahme der Herzfrequenz. Außerdem ist die Tachykardie als
kompensatorische Anpassung an den bei allen Gruppen abnehmenden arteriellen Blutdruck zu verstehen.

In unserer Untersuchung konnte kein signifikanter Unterschied zwischen den einzelnen Gruppen, was die Herzfrequenz betrifft, festgestellt werden.

Dieses Verhalten konnten wir anhand unserer Untersuchungen nachvollziehbar abbilden. Eine signifikante Zunahme des HZVI konnte in der Gruppe 120 nachgewiesen werden. Diese könnte im Rahmen der Steigerung der Inotropie und des Schlagvolumens gesehen werden, da wie erwähnt keine signifikanten
Unterschiede hinsichtlich der Herzfrequenz nachgewiesen werden konnten. Selbst bei Anwendung einer sehr ausgeprägten Hyperkapnie (Gruppe 160), sowie der begleitenden schweren Azidose konnten wir keine negativen Effekte auf das schlussendlich dem Körper zur Verfügung stehende Herzzeitvolumen feststellen, obwohl andere experimentelle Daten dafür sprechen, dass die Anwendung einer hyperkapnischen Azidose die Kontraktilität des Herzens beeinträchtigt (Walley et al. 1990).

Einwirkung auf den HZVI nimmt außerdem die Höhe des gewählten PEEP-Niveaus (de Waal et al. 2007). Dabei führt der erhöhte intrathorakale Druck zu einer mit der Höhe des PEEP korrelierenden reduzierten Füllung des Ventrikelns, verbunden mit einem Abfall des HZVI und des systemischen arteriellen Blutdrucks (Sundaresan et al. 2010). In unserer Untersuchung kann der PEEP hinsichtlich Unterschiede zwischen den Gruppen allerdings vernachlässigt werden, da alle Gruppen mit einem identischen PEEP von 6 cmH₂O beatmet wurden.

Die Bestimmung des Herzzeitvolumens in unserer Untersuchung erfolgte dabei unter Verwendung der Thermodilution bzw. der Pulskonturanalyse als klinisch etabliertes Verfahren bei Kindern und Erwachsenen (Sakka et al. 1999, Goedje et al. 1999).

4.2.7 Atmungsmechanik

werden könnte. Die histologische Aufarbeitung zeigte allerdings keinen Hinweis auf eine vermehrte Atelektasenbildung in diesen Gruppen.

Die Betrachtung des mittleren Atemwegsdrucks zeigt ebenfalls ein erwartetes Verhalten. Dieser ist vom verwendeten PEEP, als auch vom applizierten Spitzendruck und der Beatmungsfrequenz bzw. der In- und Exspirationsdauer abhängig. Der angewandte PEEP war in allen Gruppen gleich, so dass dieser aus der Betrachtung ausgeschlossen werden kann. Ebenso die Compliance, die wie erwähnt keine signifikanten Unterschiede zeigte. Der notwendige Spitzendruck war laut Protokoll so zu regulieren, dass das vorgegeben Tidalvolumen erreicht werden konnte. Da dieses in der Normokapniegruppe am größten war, ist ein höherer mittlerer Atemwegsdruck zu erwarten. Dessen Anstieg im Verlauf des 6 h-Messintervalls lässt sich als Hinweis auf die zunehmende Lungenschädigung deuten.

Der Ösophagusdruck als Maß für den intrathorakalen Druck unterschied sich nicht signifikant zwischen den einzelnen Behandlungsgruppen.

4.2.8 Zerebrale Perfusion / Intrakranieller Druck

Die zerebrale Durchblutung zeigt sich in einem weiten physiologischen Bereich, was den arteriellen mittleren Blutdruck betrifft, autoreguliert und beträgt bei einem gesunden Erwachsenen ca. 60 bis 80 ml pro 100 g Hirngewebe pro Minute. Hierbei ist eine deutliche Reservekapazität vorhanden, so dass es erst bei Absinken des Blutflusses auf ein drittel bis viertel des Ausgangswertes neurologische Defizite zu erwarten sind. Dieses Verhalten zeigt sich bei normwertigen paCO$_2$-Konzentrationen und wird als Bayliss-Effekt bezeichnet.
(Poeck et al. 2006). Im Gegensatz dazu besteht einer der hauptsächlichen Effekte einer erhöhten \(\text{paCO}_2 \)-Konzentration am Gehirn in einer Modifizierung des intrazerebralen Blutflusses, verbunden mit einem daraus resultierenden Anstieg des intrakraniellen Drucks (Cardenas et al. 1996). Dabei ist der Anstieg des Parameters der Hirndurchblutung nicht fortlaufend linear, sondern nur etwa bis zu einem Wert von ca. 60 bis 80 mmHg. Eine weiter steigende \(\text{paCO}_2 \)-Konzentration führt zu einer deutlich geringeren Zunahme des Blutflusses (Poeck et al. 2006). Ähnliche Ergebnisse, allerdings im Hinblick auf die \(\text{paCO}_2 \)-Abhängigkeit der peripheren Mikrozirkulation zeigten bei Werten über 150 mmHg keine weitere Zunahme, sondern eine deutliche Verminderung (Komori et al. 2007). Unsere Messreihe im Tiermodell führte zu ähnlichen Ergebnissen. Es lässt sich wie erwartet ein Anstieg des zerebralen Blutflusses unter Hyperkapnie, so wie in vorangegangenen Untersuchungen beschrieben, nachweisen (Tomimatsu et al. 2006). In unserer Studie zeigten die Gruppen 40 und 160 ähnliche Werte, wobei sich die Gruppe 160 erst nach einem temporären Peak zur Stunde zwei auf das Niveau der Gruppe 40 einpendelte. Allerdings konnten wir auch bei \(\text{paCO}_2 \)-Werten von 120 mmHg eine Zunahme der Gehirnperfusion feststellen.

Allerdings ist bei der Bewertung dieser Ergebnisse zu beachten, dass aufgrund der technischen Möglichkeiten eine geringere Fallzahl bei der Messung der zerebralen Perfusion (n=20) und der Messung des Hirndrucks (n=13) realisiert wurde und sich somit allenfalls Trends ableiten lassen, sich allerdings auch Einschränkungen bezüglich der Power durch die geringen Fallzahlen pro Gruppe ergeben.

4.2.9 Blutproben

Verdünnungseffekte aufgrund der zugeführten Mengen an NaCl-Lösung, sowie die durchgeführten Blutentnahmen selbst können als Grund für den in allen Behandlungsgruppen gering ausgeprägten und klinisch irrelevanten Abfall des Hämokrit-Wertes, der den Anteil der zellulären Bestandteile am Volumen des Blutes bzw. das Maß der Viskosität des Blutes beschreibt, angegeben werden. Dass diese Verminderung des Hämokrits innerhalb bzw. zwischen den Gruppen unterschiedlich ausgeprägt zu Tage trat, lässt sich mit der unterschiedlich zugeführten Menge an Volumen zur hämodynamischen Stabilisierung erklären, bei sonst weitgehend identischen Volumenzufuhren, was Ausgleich der Blutentnahmen, Puffergabe, Erhaltungsinfusion, etc., betrifft (siehe Tabelle 66, Abbildung 41).

Für die uniform ausgeprägte Erniedrigung des Hämaglobinwertes kann ebenfalls dieses Erklärungsmuster verwendet werden, so dass beide Parameter keinen Vor-
oder Nachteil der Ausprägung des Grades der Azidose anzeigen, bzw. sich nicht negativ bei stärker ausgeprägter Azidose darstellen.

4.2.10 Limitationen

wären, eine deutlich ausgeprägtere Lungenschädigung im Zustand der Normokapnie in Kauf zu nehmen wäre. Trotzdem sind hinsichtlich dieser Fragestellung weitere Studien erforderlich, um den Einfluss der Hyperkapnie auf die Restitution detailliert zu untersuchen.

In unserer Untersuchung nutzen wir den iatrogen erzeugten Surfactantmangel als Modell für das ARDS. Infolge dessen ist eine bakteriell, infektiöse Komponente, die im Rahmen eines septischen Zustandes sehr häufig zur Ausbildung eines ARDS führt, und mit einer sehr hohen Mortalitätsrate verbunden ist (Hudson et al. 1995), nicht adäquat berücksichtigt. Die hyperkapnische Azidose vermindert die Entzündungsantwort des Körpers und beeinträchtigt hiermit möglicherweise die Abwehr bakterieller Erreger auf zellulärer bzw. Mediator-vermittelter Ebene (Takeshita et al. 2003, Coakley et al. 2002).

4.3 Schlussfolgerung

Als Modell für das ARDS wurde ein iatrogen erzeugter Surfactantmangel gewählt, um eine reversible Schädigung der Lunge zu erreichen, die durch geeignete Beatmungsparameter beeinflussbar ist.

Mit dieser Studie konnten wir zeigen, dass der Einsatz von lungenprotektiven Beatmungsregimen mit einem gewählten Tidalvolumen unterhalb eines bestimmten Schwellenwertes entscheidend ist, um eine Schädigung der Lunge zu vermeiden. So zeigt sich eine mechanische Beatmung mit 4 - 5 ml/kg KG Tidalvolumen assoziiert mit hyperkapnischer Azidose von 80 mmHg in diesem Surfactantmangel-Tiermodell am Kaninchen für ARDS lungenprotektiv im Vergleich zu einer Beatmung mit 8 - 10 ml/kg KG Tidalvolumen und Normokapnie gemessen an alveolärem und interstitiellen Ödem, Inflammationsreaktion, und Oxygenierung. Die Verringerung des Tidalvolumens unterhalb von 4 - 5 Milliliter pro Kilogramm Körpergewicht unter Inkaufnahme von stärker ausgeprägter hyperkapnischer Azidose resultiert allerdings in keiner zusätzlichen Lungenprotektion, bringt aber auch bei steigender Konzentration des Kohlenstoffdioxidpartialdrucks bis zu einem bestimmten Punkt keine nachteiligen Effekte mit sich. Auch eine extreme hyperkapnische Azidose wurde in diesem Modell für ARDS ohne relevante hämodynamische, kardiale, zerebrale oder metabolische Nebenwirkungen toleriert. Andererseits war die induzierte
Lungenschädigung in diesem Surfactantmangel-Modell nur mäßiggradig ausgeprägt. Deshalb erscheinen weitere Untersuchungen notwendig, um herauszufinden, ob die Verwendung extrem niedriger Tidalvolumina unter 4 - 5 ml/kg KG bei nachhaltigerem und schwererem Lungenschaden Vorteile gegenüber der Beatmung mit 4 - 5 ml/kg KG Tidalvolumen zeigen könnte.

5. Zusammenfassung

Basierend auf dieser Fragestellung wurde ein prospektiver, kontrollierter, randomisierter, tierexperimenteller Studie durchgeführt. Hierzu wurde bei 64 erwachsenen weiblichen Kaninchen der Rasse „New Zealand white rabbit“ ein „acute respiratory distress syndrome“ infolge bronchoalveolärer Lavage erzeugten Surfactantmangel induziert. Anschließend erfolgte ein 6 h-Messintervall mit entsprechendem Beatmungsregime gemäß den vier verschiedenen definierten Behandlungsgruppen:

Gruppe 40: Normoventilation - Normokapnie [paCO₂ 35 bis 45 Millimeter Quecksilbersäule (mmHg), Tidalvolumen (Vₐ) 8 bis 10 Milliliter/Kilogramm Körpergewicht (ml/kg KG)],

Gruppe 80: Hypoventilation - mäßig ausgeprägte Hyperkapnie, [paCO₂ 75 bis 85 mmHg, Vₐ 4 bis 5 ml/kg KG],

Gruppe 120: Hypoventilation - ausgeprägte Hyperkapnie [paCO₂ 115 bis 125 mmHg, Vₐ 3 bis 4 ml/kg KG],

Gruppe 160: Hypoventilation - sehr ausgeprägte Hyperkapnie [paCO₂ 155 bis 165 mmHg, Vₐ 2 bis 3 ml/kg KG].
Währenddessen erfolgte ein kontinuierliches intensivmedizinisches Monitoring mit nachgeschalteter Datenaufzeichnung, sowie die Durchführung repetitiver arterieller und venöser Blutgasanalysen und Blutentnahmen, sowie die wiederholte Messungen des Herzzeitvolumens.

Nach Abschluss des 6 h-Messintervalls wurden die Versuchstiere getötet und einer Obduktion mit Entnahme der beiden Lungenflügel und anschließender Lavage zugeführt. Als Signifikanzniveau wurde ein Wert $p=0,05$ bestimmt.

Der Quotient Feucht- / Trockengewicht als Marker des Grades der Lungenschädigung, berechnet aus dem Feucht- und Trockengewicht der rechten Lunge wurde als primäres Zielkriterium definiert.

Dieser betrug in der Normokapnie-Gruppe (Gruppe 40) $9,98$ (7,51 - 10,44), in der Gruppe 80 $5,75$ (5,42 - 6,52), in der Gruppe 120 $5,70$ (5,38 - 6,70) und in der Gruppe 160 $5,94$ (5,71 - 6,63) und unterschied sich somit signifikant zwischen der Normokapnie- und den übrigen Hyperkapnie-Gruppen ($p=<0,001$).

Weitere, als sekundär klassifizierte Zielkriterien, wie mikroskopischer und makroskopischer Lungenbefund, die Anzahl der in der bronchoalveolären Lavage untersuchten Zellen, deren Differenzierung, sowie die Bestimmung des Gesamtproteins der Lungenlavage als Marker für die Kapillarpermeabilität, zeigten ebenfalls eine signifikant geringere Ausprägung der Lungenschädigung in den Hyperkapniegruppen. Ebenso konnten wir in den Hyperkapniegruppen eine deutlich verbesserte Oxygenierung feststellen.

Weiterhin konnte mit der vorliegenden Studie demonstriert werden, dass die weitere Reduktion des Tidalvolumens unterhalb eines Schwellenwertes von 4 - 5 ml/kg KG, verbunden mit einer ausgeprägteren Form der Hyperkapnie mit keiner weiteren Zunahme der Lungenprotektion in diesem Surfactantmangel-Modell verbunden ist. Für diese konnte allerdings erneut der Nachweis bei Anwendung einer Hyperkapnie ($paCO_2$-Wert 80 mmHg) infolge reduzierten Tidalvolumina geführt werden. Schwerwiegende hämodynamische Beeinträchtigungen konnten kurzfristig, auch bei sehr ausgeprägter Anwendung der Hyperkapnie, nicht nachgewiesen werden.
6. Literaturverzeichnis

75. Oyarzun M J, Donoso P, Quijada D: Role of hypocapnia in the alveolar surfactant increase induced by free fatty acid intravenous infusion in the rabbit. Respiration, 49: 187-194 (1986)

7. Anhang

7.1 Danksagung

Danken möchte ich allen denjenigen, die zum Gelingen dieser Arbeit beigetragen haben.

Allen voran meinem Betreuer Herrn Dr. med. Hans Fuchs für die gemeinsame Versuchsdurchführung, sowie im weiteren Verlauf meinem Promotionskollegen Herrn Dr. med. Dominik Scharnbeck für seine Hilfe.

Meinem Doktorvater Herrn Prof. Dr. med. Helmut Hummler gilt für seine Unterstützung mein besonderer Dank. Ihm und Herrn Dr. med. Fuchs danke ich ebenfalls für die Anleitung, sowie die inhaltliche Hilfestellung.

Ebenfalls sage ich Danke an das Personal des Tierforschungszentrums der Universität Ulm, stellvertretend an Fr. Dr. med. vet. Barbara Kuhnt, sowie an Herrn Dr. med. Michael Ebsen für die histologische Begutachtung der angefallenen Präparate.

Bedanken möchte ich mich außerdem bei meiner Frau Ines, für die, nicht nur kulinarische Betreuung meiner Versuchsreihe und bei meinen Eltern, Günter und Celine für Ihre Unterstützung.
7.2 Lebenslauf

Lebenslauf aus Gründen des Datenschutzes entfernt.