Computerassistierte Diagnostik (CAD) in der Mammographie –
Prospektive Studie zum Diagnostischen Potential
im Vergleich zur Mammographie/ MR-Mammographie

des Institutes für Diagnostische und Interventionelle Radiologie
der Friedrich-Schiller-Universität Jena
(1997-2002)

Dissertation
zur Erlangung des akademischen Grades
Doctor medicinae (Dr.med.)

vorgelegt dem Rat der Medizinischen Fakultät
der Friedrich-Schiller-Universität Jena

von
Karsten Koch
geboren am 12. September 1971 in Pößneck
Gutachter:

1.

2.

3.

TAG DER ÖFFENTLICHEN VERTEIDIGUNG:
INHALTSVERZEICHNIS

Inhaltsverzeichnis .. I

Abkürzungsverzeichnis .. III

Tabellenverzeichnis ... IV

Abbildungsverzeichnis .. VI

1 Einführung ... 1

1.1 Das Mammakarzinom ... 1

1.1.1 Ätiologie und Epidemiologie ... 1

1.1.2 Symptomatik .. 2

1.1.3 Histopathologie und Prognostik .. 3

1.1.3.1 Nicht-invasive Karzinome .. 5

1.1.3.2 Invasive Karzinome ... 5

1.1.3.3 Prognose ... 5

1.1.4 Abgrenzung zu gutartigen Veränderungen .. 6

1.2 Diagnostik .. 7

1.2.1 Anamnese und körperliche Untersuchung .. 7

1.2.2 Mammographie .. 8

1.2.3 Ultraschall ... 11

1.2.4 Magnetresonanzmammographie (MR-Mammographie) 12

1.2.5 Biopsie .. 13

1.2.6 Computerunterstützte Diagnostik (CAD) ... 14

1.3 Die Brustkrebsfrüherkennung .. 15

2 Zielsetzung und Fragestellung ... 17

3 Material und Methoden .. 19

3.1 Patientenkollektiv ... 19

3.2 Methodik .. 21

3.2.1 CAD-System „ImageChecker M1000“ .. 23

3.2.2 Detektionskriterien .. 26

3.2.2.1 Mikrokalkifikationen ... 27

3.2.2.2 Suspekte Verdichtungen ... 28

3.3 Bildanalyse und Datenauswertung .. 30

4 Ergebnisse ... 35

4.1 Patientenkollektiv ... 35

4.2 Histologisch gesicherte Läsionen .. 35

4.3 Analyse und Vergleich der verwendeten Untersuchungsverfahren 37

4.4 Ergebnisse der CAD-Analyse .. 40

4.4.1 Korrekt erkannte Karzinome .. 40

4.4.2 Nicht erkannte Karzinome ... 41

4.4.3 Korrekt und nicht korrekt gesetzte sowie fehlende Markierungen 41

4.4.4 Morphologisches Korrelat nicht korrekt gesetzter und fehlender
Markierungen ... 43
<table>
<thead>
<tr>
<th>4.4.5</th>
<th>ROC-Analyse</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.6</td>
<td>FROC-Analyse</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Aufteilung gesetzter Marker</td>
<td>48</td>
</tr>
<tr>
<td>4.5</td>
<td>Erkennung von suspekten Läsionen und Verbesserung der Detektionsrate</td>
<td>51</td>
</tr>
<tr>
<td>4.6</td>
<td>Einbindung des CAD-Systems in klinische Routine und Screeningmammographie</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Diskussion</td>
<td>54</td>
</tr>
<tr>
<td>5.1</td>
<td>Material und Methoden</td>
<td>54</td>
</tr>
<tr>
<td>5.2</td>
<td>Ergebnisse</td>
<td>56</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Analyse der Systemdaten der Malignomdetektion anhand von Mikrokalzifikationen und Verdichtungen</td>
<td>57</td>
</tr>
<tr>
<td>5.2.2</td>
<td>ROC/ FROC</td>
<td>60</td>
</tr>
<tr>
<td>5.3</td>
<td>Eingliederung in die Screeningmammographie</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>Zusammenfassung</td>
<td>67</td>
</tr>
<tr>
<td>Literaturverzeichnis</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Ehrenwörtliche Erklärung</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Lebenslauf</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Danksagung</td>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

Intraduktales Carcinoma in situ DCIS
Lobuläres Carcinoma in situ LCIS
Magnetresonanzmammographie MR-Mammographie, MRT
Computerunterstütztes Diagnosesystem CAD-System
Computerunterstützte Diagnose CAD
Breast Imaging Reporting and Data System BIRADS
Falsch-negativ ... FN
Falsch-positiv .. FP
Richtig-positiv ... RP
Richtig-negativ ... RN
receiver operating characteristics ROC
free-response receiver operating characteristics FROC
Positiver Vorhersagewert der Markierungen PPV_{Mark}
Mammographie ... Ma
Alternative FROC .. AFROC
Free-response Forced Error FFE
Lichtpunkte ... LP
Tabellenverzeichnis

Tabelle 2: WHO-Klassifikation des Mammakarzinoms [12] 4
Tabelle 3: Formen der Mastopathie [20] .. 7
Tabelle 4: Karzinomhäufigkeit bei Biopsie einer nicht tastbaren, mammographischen Läsion in Abhängigkeit vom mammographischen Befund [47] .. 10
Tabelle 5: Einschlusskriterien zur Aufnahme in die Studie, welche an die Patientinnen gestellt wurden ... 20
Tabelle 6: Technische Standards der MR-Mammographie, Klinik für Interventionelle und Diagnostische Radiologie, FSU Jena 23
Tabelle 7: Systemcharakteristika des CAD-Systems 26
Tabelle 8: Histologische Diagnose der aufgetretenen Tumoren (n=15) im Screeningkollektiv .. 36
Tabelle 9: Darstellung der Befunde für die Untersuchungsverfahren bei Mammæ mit Karzinom (n=15) .. 37
Tabelle 10: Darstellung der Befunde für die Untersuchungsverfahren bei Mammæ ohne Karzinom (n=160) .. 39
Tabelle 11: Histologische Diagnose und Tumorgröße der detektierten/ aufgetretenen malignen Tumoren im Screeningkollektiv 41
Tabelle 12: Absolute Anzahl der vom CAD-System gesetzten Marker sowie der fehlenden Markierungen für Mikrokalzifikationen und maligne Verdichtungsherde .. 42
Tabelle 13: Einstufung der Mammæ nach den gesetzten Markierungen sowie Sensitivität, Spezifität, positiver und negativer Vorhersagewert in der ROC-Analyse .. 47
Tabelle 14: Verteilung der durch das CAD-System gesetzten Markierungen nach ihrer Dignität ... 48
Tabelle 15: Sensitivität, Spezifität, positiver und negativer Vorhersagewert für die Teilkollektive n mit eindeutiger Zuweisung 49
Tabelle 16: Wert der aufgetretenen positiven Vorhersagewerte PPVMark für die Mammæ mit Marker kombination 49
Tabelle 17: Darstellung der Sensitivität für unterschiedliche positive Vorhersagewerte der Markierungen (PPV\textsubscript{Mark}) für maligne Mikrokalzifikationen

Tabelle 18: Darstellung der Sensitivität für unterschiedliche positive Vorhersagewerte der Markierungen (PPV\textsubscript{Mark}) bei malignen Verdichtungen
Abbildungsverzeichnis

Abbildung 1: Altersverteilung des Mammakarzinoms bei Erstdiagnose [4]........ 1
Abbildung 2: Altersverteilung der 100 an der Studie teilnehmenden Patientinnen ... 21
Abbildung 3: Das CAD-System „ImageChecker M1000“ und seine Komponenten ... 25
Abbildung 4: Markierung von sternförmigen Verdichtungen [104]................ 29
Abbildung 5: Beispiele für die Identifikation als Karzinom durch das CAD-System ... 30
Abbildung 6: Darstellung suspekter und nicht suspekter Befunde anhand der Markierungen bei Mammae mit Karzinom (n=15) 38
Abbildung 7: Darstellung suspekter und nicht suspekter Befunde anhand der Markierungen bei Mammae ohne Karzinom (n=160) 39
Abbildung 8: Prozentualer Anteil korrekt und nicht korrekt gesetzter Markierungen durch das CAD-System bei Mikrokalzifikationen und Verdichtungsherden .. 43
Abbildung 9: Röntgenmorphologisches Korrelat der durch das CAD-System nicht korrekt gesetzten Markierungen (n=41) bei Mikrokalzifikationen ... 44
Abbildung 10: Beispiele für falsch-positive Markierungen des CAD-Systems bei Mikrokalzifikationen ... 45
Abbildung 11: Röntgenmorphologisches Korrelat der durch das CAD-System nicht korrekt gesetzten Markierungen (n=244) bei malignen Verdichtungen .. 46
Abbildung 12: Beispiele für falsch-positive Markierungen des CAD-Systems bei Verdichtungen ... 46
Abbildung 13: Darstellung der Sensitivität in Abhängigkeit vom positiven Vorhersagewert der Markierungen in der FROC-Analyse 51
1 Einführung

1.1 Das Mammakarzinom

1.1.1 Ätiologie und Epidemiologie

In den westlichen Industrieländern ist das Mammakarzinom der häufigste maligne Tumor der Frau. Der Anteil an der Gesamtzahl der Krebserkrankungen der Frau weltweit beträgt etwa 21% [1]. In Deutschland schätzt man die Zahl an Neuerkrankungen auf etwa 40000 pro Jahr [2]. Die Inzidenzrate ist steigend und die kumulative Inzidenz bei Frauen bis zum 74. Lebensjahr wird mit 8% angegeben [2]. Die Zahl der Todesfälle je 100000 Frauen in der Bundesrepublik Deutschland belief sich 1990 auf etwa 45 und ist derzeitig immer noch steigend [3].

Das Auftreten des Mammakarzinoms nimmt mit steigendem Lebensalter zu. Der Altersgipfel liegt bei 60-70 Jahren. Mehr als 90% der an Brustkrebs Erkrankten sind zum Zeitpunkt der Erstdiagnose älter als 40 Jahre (Abbildung 1). Bei Frauen der Altersgruppe zwischen 35 und 55 Jahren gilt das Mammakarzinom als die häufigste Einzeltodesursache [4].

Für die Genese werden viele Faktoren diskutiert. In einigen Fällen gilt eine genetische Mutation als nachgewiesen. So wird eine Veränderung des BRCA 1-Gens (breast cancer gen 1) für die Entstehung des Brustkrebses angenommen.
Einführung

1.1.2 Symptomatik

Das Mammakarzinom kann durch eine vielfältige Symptomatik auf sich aufmerksam machen. Häufigste Zeichen sind schmerzlose, derbe Knoten (73,5%), schmerzhafte Knoten (6,1%), Sekretion der Mamille (4,4%), Einziehung der Brustwarze (2,9%) sowie lokale Ödeme (1,3%) [10]. In der Regel treten diese Symptome auf, wenn es sich bereits um ein fortgeschrittenes Karzinom handelt. Frühsymptome sind verdächtige Tastbefunde, Hauteinziehungen, Unverschieblichkeit über einer Verhärtung und Grobporigkeit, welche bei der regelmäßigen Selbstuntersuchung der Brust oder im Rahmen der Krebsfrüherkennungsuntersuchungen auffallen [3]. Die Metastasierung erfolgt bereits frühzeitig lymphogen. In 60% der diagnostizierten Mammakarzinome mit einer Größe bis zu 2 Zentimetern lassen sich bereits in der Axilla Lymphknotenmetastasen nachweisen [3].
1.1.3 Histopathologie und Prognostik

<table>
<thead>
<tr>
<th>Histologie</th>
<th>1985</th>
<th>1988</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoma in situ</td>
<td>7,1%</td>
<td>10,6%</td>
<td>11,0%</td>
</tr>
<tr>
<td>Invasives Karzinom</td>
<td>92,9%</td>
<td>89,4%</td>
<td>89,0%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Anzahl der Fälle</td>
<td>34037</td>
<td>44234</td>
<td>66780</td>
</tr>
</tbody>
</table>
Tabelle 2: WHO-Klassifikation des Mammakarzinoms [12]

WHO-Klassifikation der histologischen Subtypen des Mammakarzinoms:

<table>
<thead>
<tr>
<th>1. Nicht-invasiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Intraduktales Karzinom (DCIS)</td>
</tr>
<tr>
<td>- Papillär</td>
</tr>
<tr>
<td>- Kribriform</td>
</tr>
<tr>
<td>- Solide</td>
</tr>
<tr>
<td>- Komedoartig</td>
</tr>
<tr>
<td>b) Carcinoma lobulare in situ (LCIS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Invasiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Invasives duktales Karzinom (NOS)</td>
</tr>
<tr>
<td>b) Invasives duktales Karzinom mit überwiegender intraduktaler Komponente</td>
</tr>
<tr>
<td>c) Invasives lobuläres Karzinom</td>
</tr>
<tr>
<td>d) Muzinöses Karzinom</td>
</tr>
<tr>
<td>e) Medulläres Karzinom</td>
</tr>
<tr>
<td>f) Papilläres Karzinom</td>
</tr>
<tr>
<td>g) Tubuläres Karzinom</td>
</tr>
<tr>
<td>h) Adenoid-zystisches Karzinom</td>
</tr>
<tr>
<td>i) Sezernierendes (juveniles) Karzinom</td>
</tr>
<tr>
<td>j) Apokrines Karzinom</td>
</tr>
<tr>
<td>k) Karzinom mit Metaplasie</td>
</tr>
<tr>
<td>l) Sonstige</td>
</tr>
</tbody>
</table>

| 3. Paget-Karzinom (Sonderform des duktaLEN Karzinoms) |

NOS= “not otherwise specified”
1.1.3.1 Nicht-invasive Karzinome

Unter den nicht tastbaren Mammakarzinomen beträgt der Anteil intraduktaler Karzinome etwa 30%.

In etwa 30% der Fälle macht das intraduktale Karzinom durch das Auftreten zusätzlicher Herde in mehr als einem Quadranten auf sich aufmerksam. Man spricht hier von Multizentrität [13].

Der Anteil lobulärer Karzinome bezogen auf die Gesamtheit an Mammakarzinomen beträgt etwa 1-6% [14].

1.3.1.2 Invasive Karzinome

Mit 65-75% gehören die invasiven duktalen Karzinome zu den häufigsten Formen der invasiven Mammakarzinome. Sie haben die schlechteste Prognose.

Etwa 21% der erkrankten Personen versterben innerhalb der ersten 5 Jahre nach Diagnose [15].

1.1.3.3 Prognose

Für die Prognose sind die Tumorgröße und das Vorhandensein von Lymphknotenmetastasen entscheidend. Bei fehlender Metastasierung und bei Befall von bis maximal drei Lymphknoten ist die Tumorgröße bedeutsam. Liegen dagegen vier oder mehr positive Lymphknoten vor, bestimmt das Ausmaß der
Metastasierung die Prognose weitestgehend [18]. So haben Patientinnen mit kleinen invasiven Karzinomen einer Größe unter 1cm eine 5-Jahres-Überlebensrate von etwa 95% [18]. Im Vergleich dazu ist die Überlebensrate bei größeren Tumoren deutlich schlechter [11, 18, 19] und nimmt mit der Tumorgröße exponentiell ab [18].

1.1.4 Abgrenzung zu gutartigen Veränderungen

Die Mastopathie ist ein häufiges Krankheitsbild. Hier kommt es, vor allem bei Frauen zwischen dem 35. und 50. Lebensjahr, zu degenerativen oder proliferativen Umbauprozessen der Brustdrüse.

Nach H. Hamperl werden 3 Formen der Mastopathie unterschieden (Tabelle 3) [20].
Tabelle 3: Formen der Mastopathie nach Hamperl [20]

- **Mastopathie ohne Epithelproliferation:**
 - Krebsrisiko 1,1 : 1 bis 1,8 : 1
 - Sogenannte Mastopathie I, Fibrosklerose, einfache Zysten, Gangektasien, ruhende Metaplasien, z.T. chronische Mastitis

- **Mastopathie mit regulären Epithelproliferationen:**
 - Krebsrisiko 2,4 : 1 bis 4,5 : 1
 - Sogenannte Mastopathie II, proliferative Mastopathie, Adenose, sklerosierende Adenose, Fibroadenose, Fibroadenome, intraduktale und intrazytische Papillome (Fibroepitheliome), Adenome, proliferative Metaplasien

- **Mastopathie mit atypischen Epithelproliferationen:**
 - Krebsrisiko 22 : 1, Präkanzerose
 - Sogenannte Mastopathie III, intraduktale, intraduktuläre, intraazinäre und intrapapilläre Epitheliosis, sog. Carcinoma lobulare in situ, atypische Papillome (Epitheliome), atypische, proliferierende Metaplasien

Bei der Mastopathie zweiten und dritten Grades besteht ein erhöhtes Risiko, an einem Mammakarzinom zu erkranken [3]. Der Übergang von einer Mastopathie zu einem Carcinoma in situ wie auch zum Mammakarzinom ist mammographisch aufgrund proliferativer Umbauprozesse teilweise schwierig festzustellen [21]. Eine Abgrenzung zu malignen Prozessen ist dann nur histologisch möglich [3].

1.2 Diagnostik

1.2.1 Anamnese und körperliche Untersuchung

Die Untersuchung zur Brustkrebsvorsorge sollte regelmäßig und von einem erfahrenen Untersucher durchgeführt werden. Auch die Selbstuntersuchung der Brust hat hohen Stellenwert [22-26]. Zufallsbefunde sind in vielen Fällen jedoch
unspezifisch und bedürfen weiterer Abklärung. In 30-40% aller Tastbefunde findet sich in der Biopsie ein Mammakarzinom [27]. Der Stellenwert der manuellen Untersuchung der Brust wird dadurch verdeutlicht, dass bis zu 10% aller klinisch auffälligen Tumoren mammographisch unauffällig sind [28, 29].

1.2.2 Mammographie

Von allen heute zur Verfügung stehenden Verfahren bildet die Mammographie die Basis der bildgebenden Diagnostik der Brust. Im Hinblick auf die Früherkennung des Brustkrebses gilt sie durch den geringen finanziellen und zeitlichen Aufwand sowie die hohe Sensitivität des Verfahrens als sehr effektiv [30, 31].

Sie beinhaltet die Verwendung von Film-Folien-Systemen mittels Weichstrahltechnik (25-35kV) unter Nutzung von Streustrahlenrastern und einer Belichtungsautomatik [32-36]. Die mittlere Parenchymdosis ist für die 2-Ebenen-Technik ≤ 5mGy. Eine Qualitätssicherung wird durch regelmäßige Kontrollen der Filmaufnahme und Filmentwicklung gewährleistet.

Die beiden wichtigsten mammographischen Kriterien sind gruppiert vorliegende Mikroverkalkungen und sternförmige Parenchymverdichtungen [27, 38-40]. Beide Veränderungen sind, allgemein betrachtet, unspezifisch. Bei Mikrokalzifikationen werden deshalb zur Differenzierung zwischen benignen und malignen Befunden Größe, Anzahl, Form und Verteilung der Strukturen herangezogen [41, 42]. Bei

Lineare, verzweigte oder irregulär geformte oder polymorphe Verkalkungen und unscharf oder irregulär begrenzte Verdichtungsherde sind suspekt und gelten als malignomverdächtig [47, 48]. Isoliert auftretende, einzelne Verkalkungen mit weniger als drei Mikroverkalkungen pro Quadratzentimeter sowie Hautverkalkungen, Gefäßverkalkungen, Verkalkungen in Fibroadenomen, Kalkmilchzysten, Verkalkungen mit strahlendurchlässigem Zentrum und typische duktale Verkalkungen sind sicher benigne [40, 44, 45, 49-52]. Gruppen von sehr kleinen, ausschließlich runden oder ovalen Mikroverkalkungen sind mit hoher Wahrscheinlichkeit benigne; eine sichere Zuordnung kann aber nicht erfolgen, da in etwa 1% der Fälle ein Malignom vorliegt. Alle weiteren möglichen Muster von Mikroverkalkungen sind als unbestimmt beziehungsweise suspekt einzustufen. Die Verkalkungsmuster und entsprechende Entartungsrisiken sind in Tabelle 4 aufgeführt [47].
Tabelle 4: Karzinomhäufigkeit bei Biopsie einer nicht tastbaren, mammographischen Läsion in Abhängigkeit vom mammographischen Befund [47]

<table>
<thead>
<tr>
<th>Verkalkungen</th>
<th>Anzahl</th>
<th>Karzinomhäufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>allein, typisch maligne</td>
<td>39</td>
<td>92%</td>
</tr>
<tr>
<td>Irreguläre Verdichtungen mit Verkalkungen</td>
<td>68</td>
<td>66%</td>
</tr>
<tr>
<td>Strukturveränderungen mit Verkalkungen</td>
<td>14</td>
<td>57%</td>
</tr>
<tr>
<td>Strukturveränderungen ohne Verkalkungen</td>
<td>45</td>
<td>47%</td>
</tr>
<tr>
<td>Irreguläre Verdichtung ohne Verkalkung</td>
<td>337</td>
<td>40%</td>
</tr>
<tr>
<td>Asymmetrie mit Verkalkungen</td>
<td>7</td>
<td>29%</td>
</tr>
<tr>
<td>Verkalkungen allein, unbestimmte Dignität</td>
<td>200</td>
<td>22%</td>
</tr>
<tr>
<td>Asymmetrie ohne Verkalkungen</td>
<td>37</td>
<td>3%</td>
</tr>
<tr>
<td>Glatt begrenzte Verdichtung ohne Verkalkung</td>
<td>84</td>
<td>1%</td>
</tr>
<tr>
<td>Verkalkungen allein, typisch gutartig</td>
<td>25</td>
<td>0%</td>
</tr>
<tr>
<td>Glatt begrenzte Verdichtungen mit Verkalkungen</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>859</td>
<td>34%</td>
</tr>
</tbody>
</table>

Andere Verdichtungen, die nicht verkalkend, rund, oval oder auch leicht lobulierend, mit allseits scharfer Kontur imponieren, werden als „wahrscheinlich benigne“ eingestuft [44, 45, 53]. In der Mehrzahl dieser Veränderungen handelt es sich um Zysten oder Fibroadenome. In 2% der Fälle liegt jedoch ein Mammakarzinom vor [45, 53, 54]. Dies trifft insbesondere auf die Mastopathie mit atypischen Epithelproliferationen zu.
Werden in den Aufnahmen Regionen gefunden, die dem Radiologen suspekt erscheinen, muss zunächst geklärt werden, ob diesen Figuren ein morphologisches Korrelat zuzuordnen ist oder ob es sich um überlagerungsbedingte Phänome handelt. Ist eine sichere Einordnung nicht möglich, können Vergrößerungsaufnahmen (Zielaufnahmen) des fragwürdigen Befundes notwendig werden.

Auch die Befundung durch einen weiteren Radiologen im Sinne eines „double reading“ kann dazu beitragen, die Rate der erkannten Mammakarzinome zu verbessern [55]. Ziel hierbei ist es, durch eine weitere unabhängige Befundung eine Steigerung der Sensitivität ohne eine vermehrte Anzahl falsch–positiver Befunde zu erreichen [55]. Gegenwärtig wird untersucht, welche Rolle computergestützte Diagnosesysteme als „second reader“ übernehmen können [56].

1.2.3 Ultraschall

1.2.4 Magnetresonanzmammographie (MR-Mammographie)

liegt in der schon erwähnten Non-Invasivität und der damit geringen Belastung für die Patienten. Die Anzahl der Biopsien, die wegen suspekten oder malignen Befunden durchgeführt werden müssen, wird deutlich reduziert. Weitere methodische Vorteile der MR-Mammographie sind [61]:

1. Frühzeitige, überlagerungsfreie Darstellung kleiner Strukturen
2. Hohe Sensitivität und Tumorspezifität
3. Präzise Lokalisation suspekter Befunde
4. Bessere Abklärung der Frage nach Multifokalität und Multizentrizität
5. Variabler, optimierbarer Weichteilkontrast für verschiedene Fragestellungen
6. Verwendung von magnetischen Feldern, keine Röntgenstrahlung

In der von uns durchgeführten Studie zur Beurteilung der diagnostischen Leistungsfähigkeit des CAD-Systems „ImageChecker M1000“ wurde aus diesen Gründen für die Bewertung suspekter Verdichtungen die MR-Mammographie und die histologische Untersuchung als Goldstandard eingesetzt. Eine Histologie wurde gewonnen, wenn ein suspekter beziehungsweise eindeutig maligner Befund in der Mammographie, Sonographie oder der MR-Mammographie vorlag.

1.2.5 Biopsie

durchgeführt wurde. Für karzinomatöse Verdichtungen galt die MR-Mammographie beziehungsweise Histologie als Standard und Vergleichsgröße zum CAD-System.

1.2.6 Computerunterstützte Diagnostik (CAD)

Das erste kommerziell verfügbare CAD-System für die Analyse von Mammographien ist der „ImageChecker M1000“ [69]. Das uns von dem Produzenten R2 Technology, Los Altos, USA zur Verfügung gestellte Gerät wurde in eine prospektive Studie eingebunden, die wir im Rahmen der
1.3 Die Brustkrebsfrüherkennung

Einladungssystems, einer aufwendigen radiologischen Qualitätssicherung der eingesetzten Apparate und Untersucher eine qualitäts-gesicherte Doppelbefundung [100]. Dem gegenüber steht eine strikte und ständig wachsende Globalbudgetierung für die medizinische Versorgung. An dieser Stelle greifen die derzeitigen CAD-Systeme an. Sie sollen, einmal angeschafft, den Erstbefunder auf suspekte Läsionen aufmerksam machen. Dies kann zu einer raschen und wirksamen Erhöhung der Brustkrebsdetektionsrate führen [100].
2 Zielsetzung und Fragestellung

1) Welche diagnostischen Probleme schafft der Einsatz des CAD-Systems?
 Es soll untersucht werden, welche Karzinomtypen durch das CAD-System erkannt werden und welche Rolle die Tumorgöße bei der Detektion spielt. Außerdem werden die Befunde untersucht, welche durch das CAD-System fälschlicherweise markiert werden und so falsch-positive Ergebnisse verursachen.

2) Welche Strukturen werden vom System erkannt und markiert?
 In der Mammographie gibt es suspekte Strukturen wie Mikrokalkzifikationen und Verdichtungsherde charakteristischer Form, welche als Zeichen für das Vorhandensein eines Karzinoms zu werten sind. Es soll eine Einschätzung typischer, malignomverdächtiger und zusätzlich durch das CAD-System gesetzter Markierungen durchgeführt werden.

3) Mit welcher Sicherheit werden suspekte Strukturen (Mikrokalkzifikationen, Verdichtungsherde) vom CAD-System detektiert? Führt der Einsatz des „ImageChecker M1000“ zu einer Verbesserung der Detektion von Mammakarzinomen?
 Um eine Aussage zur diagnostischen Aussagekraft des CAD-Systems zu erhalten, erfolgt der Vergleich mit etablierten Verfahren der radiologischen Bildgebung. Für Mikrokalkzifikationen wird die Mammographie, für maligne Verdichtungen die MR-Mammographie zum Vergleich herangezogen.
4) Welche Rolle können CAD-Systeme in der Screeningmammographie einnehmen und wie gut lässt sich das CAD-System „ImageChecker M1000“ in die klinische Routine einbinden?

Von großem Interesse ist hier die Frage nach Vor- und Nachteilen, welche durch die CAD-Systeme entstehen und die praktische Umsetzung am Institut für Diagnostische und Interventionelle Radiologie der Friedrich-Schiller – Universität Jena. Besonderes Augenmerk galt hierbei dem bisherigen organisatorischen Ablauf sowie den baulichen Gegebenheiten und dem zeitlichen Aufwand, welche durch die Eingliederung des CAD-Systems entstanden.
3 Material und Methoden

3.1 Patientenkollektiv

In die prospektiv angelegte Studie erfolgte nach Beratung durch das Institut für Medizinische Statistik die Aufnahme von 100 Patientinnen, die sich im Rahmen der Mammographie-Sprechstunde des Institutes für Diagnostische und Interventionelle Radiologie der Friedrich-Schiller-Universität Jena vorstellten. Hierfür wurden initial 109 Frauen untersucht, welche sich im Zeitraum von Juli 1997 bis Januar 1998 vorstellten. Die Untersuchungen wurden im Rahmen der Brustkrebsfrüherkennung durchgeführt. Um einen möglichst breiten Patientenkollektiv zu erfassen und um für Patientinnen und Personal eine Belastung durch verlängerte Wartezeiten und einen erhöhten Arbeitsaufwand zu minimieren, wurde jede vierte Frau, die zur Screeningmammographie kam, in die Eingangsuntersuchung zur Studie einbezogen, wenn die in Tabelle 5 genannten Kriterien erfüllt waren. Für jede der teilnehmenden Patientinnen wurde ein Studienprotokoll angelegt, in welchem man die Ergebnisse der absolvierten Untersuchungen dokumentierte. So entstand pro Studienteilnehmerin eine um 5-10 Minuten längere Behandlungszeit.

Hat man in der Mammographie, Sonographie oder MR-Mammographie einen suspekten Befund detektiert oder bestand Anhalt für einen malignen Tumor, so wurde eine Probiopsie des verdächtigen Herdes durchgeführt. Bei vier Patientinnen mit suspentem MRT-Befund war es nicht möglich, das Ergebnis der histologischen Aufarbeitung zu erfahren, da sich die Patientinnen unserer
Betreuung entzogen und eine weitere Behandlung außerhalb unseres Klinikums erfolgte.

Von den zur Eingangsuntersuchung 109 Patientinnen konnten dadurch 100 Patientinnen in die Studie einbezogen werden. Die an die Studienteilnehmerinnen gestellten Anforderungen sind in nachfolgender Tabelle aufgeführt.

Tabelle 5: Einschlusskriterien zur Aufnahme in die Studie, welche an die Patientinnen gestellt wurden

<table>
<thead>
<tr>
<th>Einschlusskriterien zur Studie:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Die Vorstellung der Patientin in der Mammographie-Sprechstunde erfolgte im Rahmen der Krebsfrüherkennung.</td>
</tr>
<tr>
<td>• Die Mammographie wurde an unserer Einrichtung durchgeführt. Patientinnen mit auswärtigen Mammographie-Aufnahmen, die nur zur Sonographie und Befundung der Mammogramme zur Vorsorgeuntersuchung kamen, wurden nicht in die Studie einbezogen.</td>
</tr>
<tr>
<td>• Bei den Patientinnen mit Mammakarzinom handelte es sich um eine Erstdiagnose.</td>
</tr>
<tr>
<td>• Zur Diagnosesicherung erfolgte die chirurgische Biopsie. So konnte bei suspekten oder eindeutig malignen Befunden in der Mammographie, Sonographie oder MR-Mammographie ein Mammakarzinom bestätigt oder ausgeschlossen werden.</td>
</tr>
</tbody>
</table>

3.2 Methodik

Die Mammographie der Patientinnen im Rahmen der Brustkrebsfrüherkennung wurde einheitlich gestaltet und erfolgte nach den „Leitlinien der Bundesärztekammer zur Qualitätssicherung in der Röntgendiagnostik und Empfehlungen der Deutschen Röntgengesellschaft“. In unserer Einrichtung kam das Mammographiegerät „Senografie DMR“ der Firma General Electrics, USA zum Einsatz. Um eine hohe Detailerkennbarkeit (Details ≤ 0,2mm) und einen hohen Kontrast bei niedriger Strahlenbelastung (Dosis: ≤ 100µGy, Expositionszeit: ≤ 2s) zu erreichen, wurden hochauflösende Film-Folien-Systeme mit einer Auflösung von > 10Lp/mm verwendet. Bei dem Filmmaterial handelte es sich um „Kodak MinR 2000“ der Firma Kodak, USA. Da bei jeder Patientin eine kranio-kaudale und eine medio-laterale Aufnahme pro Brust angefertigt wurde, kamen insgesamt 400 Mammographie-Aufnahmen zur Auswertung. Auf diese Weise wurde von 100 Patientinnen in insgesamt 200 Fällen die Brust auf suspekte Läsionen untersucht. Bei jeder Teilnehmerin der Studie erfolgte neben der Mammographie eine Sonographie sowie eine Magnetresonanz-Mammographie der Brust. Die Sonographie wurde im B-Bild-Modus mittels 7,5 MHz-Schallkopf und dem Gerät „Siemens Sonoline Elegra“ (Firma Siemens, Erlangen, Deutschland)
Material und Methoden
durchgeführt. Mit Hilfe der Mammographie ließen sich Mikrokalzifikationen und Verdichtungen lokalisieren. Mittels additiver Sonographie war eine Verifizierung mammographischer Befunde mit erhöhter Sicherheit möglich.
Die Ergebnisse der CAD-Analyse bei Mikrokalzifikationen wurden mit denen der Mammographie (Goldstandard) verglichen. Es erfolgte die Verlaufskontrolle der gesunden Mammae mittels Mammographie, welche bei 86 Patientinnen gewährleistet werden konnte. In dieser Gruppe befanden sich 4 Patientinnen mit einseitiger Kontrolle bei Ablatio mammae der Gegenseite wegen Mammarkarzinoms. Bei einer mittleren Dauer der Verlaufskontrolle von 37 Monaten wurden insgesamt 168 Mammae ohne Mikrokalzifikationen und 7 Mammae mit malignem Mikrokalk untersucht, so dass insgesamt 175 Mammae in die Auswertung bezüglich der Detektion von malignen Mikrokalk einflossen.
Material und Methoden

Durchführung der MRT der Mamma" unter den in Tabelle 6 aufgeführten technischen Standards durchgeführt.

Tabelle 6: Technische Standards der MR-Mammographie, Klinik für Interventionelle und Diagnostische Radiologie, FSU Jena

<table>
<thead>
<tr>
<th>Technische Standards der MR-Mammographie:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Magnetfeldstärke: 1,5 T</td>
</tr>
<tr>
<td>- Doppel-Mammaspule</td>
</tr>
<tr>
<td>- Untersuchung vor und nach intravenöser Injektion von paramagnetischen Kontrastmittel</td>
</tr>
<tr>
<td>- Kontrastmitteldosierung: 0,1mmol Gd-DTPA/kg KG</td>
</tr>
<tr>
<td>- T1/T2-gewichtete Gradientenecho-Sequenzen in 2D- oder 3D-Technik</td>
</tr>
<tr>
<td>- Auflösung in der Schichtebene: 1mm</td>
</tr>
<tr>
<td>- Schichtdicke: 4mm</td>
</tr>
<tr>
<td>- Zeitliche Auflösung: 9 Minuten, Abbildung der Mammae 8mal nach Kontrastmittelgabe, Messung in Minutenabstand</td>
</tr>
<tr>
<td>- Subtraktion korrespondierender Prä- und Post-KM-Schichten, quantitative Messungen in „Regions of interest“</td>
</tr>
<tr>
<td>- Befundung in Kenntnis des klinischen Befundes und nur zusammen mit einer aktuellen, qualitativ guten Mammographie sowie ggf. ergänzenden Sonographie</td>
</tr>
</tbody>
</table>

3.2.1 CAD-System „ImageChecker M1000“

Für die computergestützte Diagnostik wurde das System „ImageChecker M1000“ mit der Softwareversion 1.2 und seine Komponenten der Firma R2 Technology (Los Altos, Kalifornien, USA) eingesetzt. Es handelt sich hierbei um ein System, bei der Original-Mammogramme sekundär digitalisiert und danach in eine Prozessoreinheit eingelesen werden. Das System besteht aus einem Filmdigitalisierer, dem Verarbeitungsrechner sowie dem Anzeigerechner, der in
einen Alternator implementiert ist und das Resultat der CAD-Bildbearbeitung auf zwei Monitoren anzeigt.

Im Filmdigitalisierer werden mittels Laser-Scanner Mammographien digitalisiert. Dabei haben Aufnahmen der Größe 18x24cm eine Auflösung von 3556x4760 Pixel, während bei einem 24x30cm Mammographiefilm eine Auflösung von 4760x5970 Pixel erreicht wird [69]. Daraus resultiert eine räumliche Auflösung von 50µm bei einer Grauwerttiefe von 12 bit [69].

Die Digitalisierung sowie Bildverarbeitung von 4 Mammographien bei Verwendung eines 18x24cm Films dauert etwa 6-8 Minuten. Mit diesem Vorgang erfolgt gleichzeitig die Vergabe eines Strichcodes, so dass jedes digitalisierte Bild eindeutig dem Original zugewiesen wird und jederzeit reproduzierbar ist. Das Resultat wird über ein Ethernet-Netzwerk an den Anzeigerechner übermittelt und steht dort etwa eine Minute später zur Verfügung [69].

Über den beiden Monitoren befindet sich ein Alternator mit einer Kapazität von bis zu 480 Mammographien.

Abbildung 3: Das CAD-System „ImageChecker M1000“ und seine Komponenten
Tabelle 7: Systemcharakteristika des CAD-Systems „ImageChecker M1000“

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filmformat</td>
<td>18x24cm / 24x30cm</td>
</tr>
<tr>
<td>Scanzeit pro Film</td>
<td>18x24cm: 60s / 24x30cm: 100s</td>
</tr>
<tr>
<td>Analysezeit pro 4 Mammographien</td>
<td>6-8min (18x24cm)</td>
</tr>
<tr>
<td>Räumliche Auflösung</td>
<td>50µm</td>
</tr>
<tr>
<td>Bildgröße, digitalisiert</td>
<td>18x24cm: 3556x4760 Pixel</td>
</tr>
<tr>
<td></td>
<td>24x30cm: 4760x5970 Pixel</td>
</tr>
<tr>
<td>Dynamikbereich</td>
<td>12 bit</td>
</tr>
<tr>
<td>Prozessor</td>
<td>Sun Sparc 20</td>
</tr>
<tr>
<td>RAM</td>
<td>16MB</td>
</tr>
<tr>
<td>Festplattengröße</td>
<td>1,2GB</td>
</tr>
<tr>
<td>Speicherkapazität</td>
<td>600 Patientinnen</td>
</tr>
<tr>
<td></td>
<td>(à 4 Mammographien)</td>
</tr>
<tr>
<td>Netzwerk</td>
<td>Ethernet 10-Base T</td>
</tr>
<tr>
<td>Software</td>
<td>Version 1.2</td>
</tr>
</tbody>
</table>

3.2.2 Detektionskriterien

In den letzten Jahren hat sich zur Einstufung von Mammographiebefunden das nach den Richtlinien des „American College of Radiology“ geschaffene „Breast Imaging Reporting and Data System“ (BIRADS) etabliert. Hier werden folgende 5 Kategorien unterschieden [101]:
- BIRADS 1- keine Läsion vorhanden
- BIRADS 2- Detektion einer sicher gutartigen Läsion
- BIRADS 3- Detektion einer suspekten, wahrscheinlich benignen Läsion
- BIRADS 4- Detektion einer suspekten, wahrscheinlich malignen Läsion
- BIRADS 5- Detektion einer sicher malignen Läsion

Zum Zeitpunkt des Studienbeginns im Jahr 1997 war diese Unterteilung in Deutschland wenig verbreitet, so dass zur Einordnung der Befunde eine eigene, vierstufige Einteilung erfolgte. Zur Analyse der untersuchten Mamme anhand
der Befunde in der Mammographie erfolgte die Einteilung in nachstehende Kategorien:

1. Brust ohne Veränderung; ein fraglich pathologischer Befund wurde nicht erhoben (ohne Läsion = BIRADS 1)
2. Brust mit Veränderungen, welche sicher gutartiger Natur sind (sicher gutartige Läsion = BIRADS 2)
3. Brust mit Veränderungen, deren Dignität nicht zu klären ist (suspekte, eher benigne Läsion = BIRADS 3; suspekte, eher maligne Läsion = BIRADS 4)
4. Brust mit Veränderungen, welche sicher bösartiger Genese sind (maligne Läsion = BIRADS 5)

Eine Einteilung für die durch das CAD-System gesetzten Markierungen nach BIRADS war nicht möglich. Es konnte nur die Unterteilung in „nicht suspekt“ und „suspekt“ durchgeführt werden.

3.2.2.1 Mikrokalzifikationen

Mammographisch lassen sich Mikrokalzifikationen erkennen, wenn sie eine Größe von mindestens 100 µm besitzen. Dabei ordnet man einer potentiellen Verkalkung ein Grauwertmaximum zu, während die Umgebung dieser Kalzifikation nur einen mittleren Grauwert erreicht [102]. Mikrokalzifikationen werden in dem von uns eingesetzten CAD-System durch ein Dreieck dargestellt. Für ihre Erkennung werden standardisierte klinische Charakteristiken zugrunde gelegt. Anzahl, Kontrast, Form und räumliche Anordnung gelten als wichtige Kriterien für die Klassifikation [85, 103]. Ein Dreieck wurde dort gesetzt, wo sich mindestens 3 punktförmige Kalzifikationen pro 0,5 cm² Film befanden und diese eine Größe von 1 mm nicht überschritten. Es konnten auf diese Art bis zu

3.2.2.2 Suspekte Verdichtungen

Abbildung 4: Markierung von sternförmigen Verdichtungen durch das CAD-System: fehlende Markierung von radiär verlaufenden Linien wegen abwesender zentraler Verdichtung (links), korrekte Markierung sternförmiger Verdichtung aufgrund zentraler Masse (Mitte) und ohne zentrale Masse bei ausgeprägter radiärer Zeichnung (rechts) [104]

Vom System werden Verdichtungen nicht erkannt, wenn diese glatt berandet, inhomogen, binnenstrukturarm oder deformiert im Mammogramm abgebildet sind. Beispiele für die Identifikation als Karzinom durch die Markierung von Mikrokalkzifikationen oder Parenchymverdichtung sowie durch das Auftreten beider Merkmale werden in Abbildung 5 demonstriert.
Material und Methoden

Abbildung 5: Beispiele für die Identifikation als Karzinom durch die Markierung von Mikrokalzifikationen (links) oder Parenchymverdichtung (Mitte) sowie durch das Auftreten beider Merkmale (rechts) durch das CAD-System

3.3 Bildanalyse und Datenauswertung

Material und Methoden

Hinsichtlich ihres morphologischen Korrelates wurden korrekte oder fehlerhafte Markierung sowie die fehlende Markierung durch das CAD-System festgehalten. Man erhielt somit folgende Klassifikation:

1. Falsch-negative Zeichen (FN): vom CAD-System nicht gesetzte Marker in vom Radiologen beschriebenen Läsionen (nicht erkannte Mikrokalzifikation/Verdichtung)

2. Falsch-positive Zeichen (FP): vom CAD-System gesetzte Zeichen ohne Markierung durch den Radiologen

4. Richtig-negative Zeichen (RN): vom CAD-System in unauffälligen Gebieten nicht gesetzte Marker

Die Auswertung der Ergebnisse wurde mit Unterstützung des Institutes für Medizinische Statistik der Friedrich-Schiller-Universität Jena mittels einer deskriptiven Statistik durchgeführt. Für den relativ geringen Umfang der
Material und Methoden

Stichproben wurde ein nichtparametrischer Test für mehr als 2 Stichproben verwendet. Es erfolgte so für die Mammographie, die Magnetresonanzmammographie und die CAD-Analyse neben der Berechnung von Sensitivität und Spezifität die Signifikanzprüfung der 3 verbundenen Stichproben mittels Cochran-Test. Die Bestimmung der Signifikanz für den Vergleich für jeweils nur zwei der verwendeten Methoden erfolgt über den Mc-Nemar-Test.

Für den Vergleich stand die Form einer ROC- und einer FROC-Analyse zur Verfügung. Beide zum Einsatz kommenden Methoden, sowie ihre Vor- und Nachteile sind nachfolgend dargestellt.

Material und Methoden

Ein Problem bei der Auswertung bildeten Mammographien, in denen mehrere Markierungen verschiedener Dignität (richtig-negativ, falsch-negativ, falsch-positiv, richtig-positiv) vorkamen. So waren in dem von uns untersuchten Patientenkollektiv falsch-positive oder falsch-negative Markierungen neben richtig-positiven Markierungen auf der gleichen Mammographie-Aufnahme anzutreffen und eine Zuordnung dieser Mammographie zu oben genannten Klassifikationen konnte deshalb nicht eindeutig erfolgen. Um diese Fälle nicht aus der Betrachtung und Auswertung auszuschließen und um eine Relation der richtig-positiven Marker bezogen auf die Gesamtheit aller durch das CAD-System gesetzten Marker herzustellen, wurde für die Markierungen der positive Vorhersagewert (PPV\text{Mark}) als Quotient aus richtig-positiven Markierungen und der Summe aller gesetzten Markierungen (richtig-positive und falsch-positive Markierungen) berechnet und dargestellt.

\[
\text{Positiver Vorhersagewert: } \text{PPV}_\text{Mark} = \frac{(\text{Richtig – positive})}{\text{(Richtig – positive) + (Falsch – positive})}
\]

- War \text{PPV}_\text{Mark} = \text{nicht definiert}, so lagen weder richtig-positive noch falsch-positive Marker vor.
- War \text{PPV}_\text{Mark} = 0, so lagen falsch-positive Markierungen vor. Richtig-positive Marker fehlten.
• War $\text{PPV}_{\text{Mark}} = 1$, so lagen richtig positive Markierungen vor. In diesem Fall fehlten falsch-positive Markierungen.

• War $0 < \text{PPV}_{\text{Mark}} < 1$, so galt die suspekte Region als detektiert und wurde als richtig-positiv eingestuft, wenn der positive Vorhersagewert der Markierungen größer oder gleich den jeweilig betrachteten Vorhersagewerten war. Die Fälle, in denen der PPV_{Mark} kleiner war als der betrachtete Vorhersagewert, galten als nicht detektiert.

Für jede Mamma konnte so aufgrund der gesetzten Markierungen der positive Vorhersagewerte (PPV_{Mark}) berechnet werden. Es wurden in Abhängigkeit der Anzahl richtig- und falsch-positiver Markierungen bei Mikrokalzifikationen die positiven Vorhersagewerte $0/ 0,5/ 1$ und bei Verdichtungen $0/ 0,25/ 0,5/ 0,67/ 1$ erzielt. Für jeden dieser aufgetretenen positiven Vorhersagewerte wurde die Sensitivität berechnet. Die Mammographien, deren PPV_{Mark} größer oder gleich diesen betrachteten Vorhersagewerten waren, galten als durch das CAD-System korrekt markierte Läsionen und wurden als richtig-positiv gewertet. So vergrößerte sich das analysierte Studienkollektiv mit fallendem betrachteten positiven Vorhersagewert. Die Kombinationen aus falsch-positiven und falsch-negativen Markierungen wurden als „falsch-negativ“ eingestuft, da keiner der gesetzten Markierungen die richtige Lokalisation der malignen Verdichtung beschrieb.
4 Ergebnisse

4.1 Patientenkollektiv

4.2 Histologisch gesicherte Läsionen

Tabelle 8: Histologische Diagnose der aufgetretenen Tumoren (n=15) im Screeningkollektiv von 175 Mammae

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Anzahl</th>
<th>Anteil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobuläres Carcinoma in situ</td>
<td>1</td>
<td>6,7</td>
</tr>
<tr>
<td>Duktales Carcinoma in situ</td>
<td>2</td>
<td>13,3</td>
</tr>
<tr>
<td>Invasiv duktales Karzinom</td>
<td>6</td>
<td>40,0</td>
</tr>
<tr>
<td>Invasiv lobuläres Karzinom</td>
<td>1</td>
<td>6,7</td>
</tr>
<tr>
<td>Invasiv tubuläres Karzinom</td>
<td>2</td>
<td>13,3</td>
</tr>
<tr>
<td>Invasiv lobuläres Karzinom + duktales Karzinom</td>
<td>2</td>
<td>13,3</td>
</tr>
<tr>
<td>Invasiv tubuläres Karzinom + invasiv duktales Karzinom</td>
<td>1</td>
<td>6,7</td>
</tr>
<tr>
<td>Summe</td>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>

Mit dem untersuchten Patientenkollektiv wurden insgesamt 175 Mammae in die Betrachtung einbezogen. In 36 von 175 Fällen (20,6%) wurde aufgrund mindestens einer suspekten Untersuchung die Indikation zur histologischen Sicherung des Befundes gestellt. Dabei war in 24 Fällen (66,7%) eine suspekte bzw. maligne Befundung der MR-Mammographie Anlass zur Biopsie. In 12 Fällen (33,3%) erfolgte die Gewinnung einer Histologie aufgrund eines Verdachtes in der Mammographie.

Insgesamt wurde damit der Verdacht der Malignität bei 15 der 36 durchgeführten Biopsien (41,7%) bestätigt. Dabei stellte sich in 14 Fällen (93,3%) ein suspekter MR-Mammographiebefund dar. In einem der 12 Probebiopsien (8,3%), die infolge suspekten Mammographiebefundes durchgeführt wurden, ergab sich ein maligner Befund, welcher nicht in der MR-Mammographie nachzuweisen war. Bei einer Patientin mit histologisch gesichertem malignem Tumor wurden keine Parenchymveränderungen im Sinne von Verdichtungen gefunden. Lediglich die Mikrokalzifikationen boten Anhalt für Malignität.
4.3 Analyse und Vergleich der verwendeten Untersuchungsverfahren

Während für die Analyse von Mammographie, MR-Mammographie und Biopsie die Einteilung in 4 Kategorien erfolgte, war durch das CAD-System nur die Unterteilung in „suspekt“ und „nicht suspekt“ möglich.

Die Verteilung der in der Studie verwendeten Verfahren und Kombinationen von Verfahren nach dem Befund wird in Tabelle 9 und 10 dargestellt. Hier erfolgte die getrennte Auswertung für die Fälle mit und ohne nachgewiesenem Karzinom. Es handelt sich bei den aufgeführten Angaben jeweils um die Anzahl betroffener Mammae.

Bei den Mammae mit Karzinom überwog die Anzahl suspekter Befunde bei jeder eingesetzten Untersuchungsmethode. Es wurden von den in der Studiengruppe aufgetretenen 15 Krebsfällen durch die Mammographie 14 (93,3%), mittels MR-Mammographie 14 (93,3%) und durch das CAD-System 9 Fälle (60%) markiert (Abbildung 6). In der durchgeführten Signifikanzprüfung mittels Cochran-Test für alle 3 Stichproben konnten diese Ergebnisse innerhalb eines 5-Prozent-Signifikanzniveaus als signifikant dargestellt werden (p=0,037). Für den Vergleich zweier Verfahren miteinander ließ sich innerhalb eines 10-Prozent-Signifikanzniveaus mittels Mc-Nemar-Test nur für Mammographie und CAD (p=0,063) ein signifikantes Ergebnis belegen. Der Vergleich von Mammographie und MR-Mammographie (p=1,000) sowie von MR-Mammographie und CAD (p=0,125) war hier nicht signifikant.

Tabelle 9: Darstellung der Befunde für die Untersuchungsverfahren Mammographie (Ma), MR-Mammographie (MRT) und das CAD-System (CAD) bei Mammae mit Karzinom (n=15)

<table>
<thead>
<tr>
<th>Befundklassifikation</th>
<th>Ma</th>
<th>MRT</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht markiert (falsch-negativ)</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Markiert (richtig-positiv)</td>
<td>14</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Gesamt</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

(p=0,037)
Abbildung 6: Darstellung suspekter und nicht suspekter Befunde anhand der Markierungen für die Untersuchungsverfahren Mammographie (Ma), MRT und das CAD-System (CAD) bei Mammae mit Karzinom (n=15)

In der Gruppe der gesunden Mammae überwog mit Ausnahme der CAD-Analyse in allen zur Befundung verwendeten Methoden der Anteil nicht suspekter Befunde. Der Anteil suspekter Befunde liegt bei diesen Verfahren zwischen 6,3 und 10,6 Prozent. Bei der Diagnostik mittels CAD-System finden sich in 75% der untersuchten Mammae suspekte Befunde (Abbildung 7). Auch hier erfolgte für alle 3 Stichproben die Signifikanzprüfung mit dem Cochran-Test. Es ergab sich ein hochsignifikantes Ergebnis (p<0,001). Für den Vergleich von zwei Verfahren miteinander, ergaben sich mittels Mc-Nemar-Test für Mammographie und CAD (p<0,001) und MR-Mammographie und CAD (p<0,001) hochsignifikante Ergebnisse. Die Aussage für Mammographie und MR-Mammographie (p=0,678) war nicht signifikant.
Tabelle 10: Darstellung der Befunde für die Untersuchungsverfahren Mammographie (Ma), MR-Mammographie (MRT) und das CAD-System (CAD) bei Mammae ohne Karzinom (n=160)

<table>
<thead>
<tr>
<th>Befundklassifikation</th>
<th>Ma</th>
<th>MRT</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht markiert (richtig-negativ)</td>
<td>143</td>
<td>150</td>
<td>40</td>
</tr>
<tr>
<td>Markiert (falsch-positiv)</td>
<td>17</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>Gesamt</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
</tbody>
</table>

(p<0,001)

Abbildung 7: Darstellung suspekter und nicht suspekter Befunde anhand der Markierungen für die Untersuchungsverfahren Mammographie (Ma), MRT und das CAD-System (CAD) bei Mammae ohne Karzinom (n=160)

Bei den Mammae mit Karzinom (n=15) stimmte die Diagnose eines einzigen suspekten Befundes (richtig-positiv) zwischen CAD-Analyse und Mammographie überein. Bei den nicht suspekten Befunden fand sich hier beim Vergleich von CAD-Analyse und Mammographie in einem von sechs Fällen eine Übereinstimmung.

In der Gruppe der Mammae ohne Malignom (n=160) wurden in 14 Fällen vom CAD-System und Mammographie gleichzeitig suspekte Befunde (falsch-positiv) gekennzeichnet. Die Einstufung als „nicht suspekt“ (richtig-negativ) erfolgte in

39
Ergebnisse

dieser Gruppe bei Vergleich von CAD-System mit der Mammographie in 46 Fällen (28,8%) identisch.
Für die Brüste, bei denen bei der Diagnosevergabe keine Übereinstimmung erzielt wurde, konnte durch Einsatz des „ImageChecker M1000“ in der Gruppe der Mammae mit Karzinom keine Verbesserung der Detektionrate von Mammakarzinomen erreicht werden. In der Gruppe der gesunden Mammae erfolgte durch die Mammographie in 3 Fällen (1,9%) eine falsch-positive Einstufung, während durch das CAD-System eine richtig-negative Zuordnung vorlag.

4.4 Ergebnisse der CAD-Analyse

4.4.1 Korrekt erkannte Karzinome

Durch das CAD-System „ImageChecker M1000“ wurde der maligne Tumor in 9 von 15 Fällen erkannt. Bezogenhend darauf ergibt sich somit eine Sensitivität von 60%.

Die histologisch gesicherten Läsionen wurden in einem Fall (11,1%) anhand suspekter Mikrokalzifikationen markiert. In 5 Fällen (55,6%) geschah die Identifikation des Malignoms nur aufgrund sternförmiger Parenchymverdichtungen. In 3 Fällen (33,3%) traten beide Merkmale gemeinsam auf. Somit wurden 4 der 7 (57,1%) mit Mikrokalzifikationen einhergehenden malignen Läsionen durch das CAD-System korrekt angezeigt und 8 von 14 (57,1%) sternförmigen malignen Verdichtungen vom CAD-System richtig gefunden.

Dabei fanden sich Mikrokalzifikationen in 3 von 4 Fällen auf kranio-kaudaler und medio-lateraler Aufnahme. Bei den Verdichtungen erfolgte die Darstellung in 6 Fällen in zwei Ebenen und in zwei Fällen nur in einer Ebene (kranio-kaudal oder medio-lateral). Insgesamt konnten bezüglich der erkannten Läsionen diese in beiden Ebenen in 7 Fällen (77,8%) richtig markiert werden. In 2 Fällen (22,2%) wurde die Läsion in einer Ebene erkannt.

Alle Karzinome waren kleiner als 5 cm. Bei 5 der 15 Karzinome fand sich eine Tumogröße unter 1 cm. Ein Karzinom, das im Patientenkollektiv auftrat, war
Ergebnisse

nicht größer als 0,5 cm. Dieses wurde durch den „ImageChecker“ markiert. Die nachfolgende Tabelle bietet Aufschluss über die Detektionsrate durch das CAD-System hinsichtlich Tumorgröße und Histologie.

<table>
<thead>
<tr>
<th>Tumorgröße</th>
<th>Lobuläres Cis</th>
<th>Duktales Cis</th>
<th>Invasiv duktales Ca</th>
<th>Invasiv lobuläres Ca</th>
<th>Invasiv tubuläres Ca</th>
<th>Invasiv lobuläres Ca + duktales Cis</th>
<th>Invasiv tubuläres Ca + invasiv duktales Ca</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>T ≤ 0,5 cm</td>
<td>0/1</td>
<td>1/1</td>
<td>2/3</td>
<td>1/1</td>
<td>1/1</td>
<td>0/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>0,5 cm < T ≤ 1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 cm < T ≤ 2 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 cm < T ≤ 5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T=Tumorgröße

4.4.2 Nicht erkannte Karzinome

In 6 von 15 Fällen (40%) wurde durch das CAD-System das Karzinom nicht erkannt. Alle nicht erkannten Tumoren waren größer als 0,5 cm. 5 dieser 6 nicht erkannten Karzinome wiesen keinen Mikrokalk auf und wären nur anhand der Verdichtungsherde zu erkennen gewesen. In einem Fall war Mikrokalk vorhanden, welcher vom CAD-System jedoch nicht erkannt wurde.

4.4.3 Korrekt und nicht korrekt gesetzte sowie fehlende Markierungen

Das CAD-System „ImageChecker M1000“ markierte bei den 350 untersuchten Mammographiefilmen 258 sternförmige Verdichtungen. Damit betrug die Markerdichte pro Mammographiefilm für Verdichtungen 0,74. Nach histologischer
Untersuchung ließ sich bei lediglich 14 der 258 gesetzten Marker (5,4%) ein Karzinom der Brust bestätigen. Damit wurden 244 Markierungen (94,6%) zur Markierung maligner Verdichtungen falsch gesetzt. In 14 Fällen erfolgte keine Markierung der malignen Verdichtungen.

Bei den Mikrokalzifikationen setzte das CAD-System insgesamt 55 Markierungen. Damit wurde bei unserem Patientenkollektiv eine Markerdichte für Mikrokalk von 0,16 Markern pro Mammographiefilm erreicht. 14 Markierungen (25,5%) von insgesamt 55 gesetzten Markern entsprachen vorhandenem und vom Radiologen beschriebenem Mikrokalk. In 41 Fällen (74,5%) wurde Mikrokalk fälschlicherweise markiert. Eine Markierung malignen Mikrokalkes wurde in 8 Fällen nicht durchgeführt.

Die Verteilung der gesetzten Marker für Mikrokalzifikationen und maligne Verdichtungen werden in Tabelle 12 und Abbildung 8 veranschaulicht:

Tabelle 12: Absolute Anzahl der vom CAD-System gesetzten Marker (richtig-positiv, falsch-positiv) sowie der fehlenden Markierungen (falsch-negativ) für Mikrokalzifikationen und maligne Verdichtungsherde

<table>
<thead>
<tr>
<th>Markierungen</th>
<th>Mikrokalzifikationen</th>
<th>Karzinom. Verdichtungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldstandard (gesamt)</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>CAD (gesamt)</td>
<td>55</td>
<td>258</td>
</tr>
<tr>
<td>Richtig-positiv</td>
<td>14 (25,5%)</td>
<td>14 (5,4%)</td>
</tr>
<tr>
<td>Falsch-positiv</td>
<td>41 (74,5%)</td>
<td>242 (94,6%)</td>
</tr>
<tr>
<td>Falsch-negativ</td>
<td>8</td>
<td>14</td>
</tr>
</tbody>
</table>
Ergebnisse

Abbildung 8: Prozentualer Anteil korrekt und nicht korrekt gesetzter Markierungen durch das CAD-System bezogen auf die Gesamtzahl der Markierungen bei Mikrokalzifikationen und Verdichtungsherden.

4.4.4 Morphologisches Korrelat nicht korrekt gesetzter und fehlende Markierungen

Abbildung 9: Röntgenmorphologisches Korrelat der durch das CAD-System nicht korrekt gesetzten Markierungen (n=41) bei Mikrokalzifikationen
Abbildung 10: Beispiele für falsch-positive Markierungen des CAD-Systems bei Mikrokalzifikationen: Gefäßkalk (links oben), grobe Kalzifikationen (rechts oben), feines Bindegewebe (links unten), Bildartefakt (rechts unten)
Abbildung 11: Röntgenmorphologisches Korrelat der durch das CAD-System nicht korrekt gesetzten Markierungen (n=244) bei malignen Verdichtungen

Abbildung 12: Beispiele für falsch-positive Markierungen des CAD-Systems bei Verdichtungen: Mastopathie, Kreuzung zwischen Gefäß und feinem Bindegewebe (links), Fibrose, Drüsengewebe (rechts)
4.4.5 ROC-Analyse

Tabelle 13: Einstufung der Mammae nach den gesetzten Markierungen durch das CAD-System sowie Sensitivität, Spezifität, positiver und negativer Vorhersagewert für maligne Mikrokalkzifikationen und maligne Verdichtungen in der ROC-Analyse für Mammae mit Verlaufskontrolle (n=175)

<table>
<thead>
<tr>
<th></th>
<th>Maligner Mikrokalk</th>
<th>Maligne Verdichtungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richtig-negative</td>
<td>144</td>
<td>39</td>
</tr>
<tr>
<td>Falsch-negative</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Falsch-positive</td>
<td>24</td>
<td>122</td>
</tr>
<tr>
<td>Richtig-positive</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Positiver Vorhersagewert</td>
<td>0,14</td>
<td>0,07</td>
</tr>
<tr>
<td>Negativer Vorhersagewert</td>
<td>0,98</td>
<td>0,87</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>57,1%</td>
<td>64,3%</td>
</tr>
<tr>
<td>Spezifität</td>
<td>85,7%</td>
<td>24,2%</td>
</tr>
</tbody>
</table>

Für die Detektion von malignen Mikrokalkzifikationen ergibt sich eine Sensitivität von 57,1% bei einer Spezifität von 85,7%. Maligne Verdichtungen der Brust lassen sich durch den „ImageChecker“ mit einer Sensitivität von 64,3% detektieren, wobei die Spezifität hier 24,2% beträgt.
4.4.6 FROC-Analyse

Bei der FROC-Analyse werden Mikrokalzifikationen und maligne Verdichtungen als „erkannt“ gewertet, wenn sich der Marker (Dreieck oder Stern) in der Lokalisation der suspekten Struktur befindet. Wurde mehr als ein Marker pro Mamma gesetzt, war eine eindeutige Zuordnung der Brust nach Dignität (richtig-negativ, falsch-negativ, falsch-positiv, richtig-positiv) nicht möglich.

In dem von uns untersuchten Patientenkollektiv traten neben Markierungen durch nur einen Marker die in Tabelle 14 dargestellten Markerkombinationen auf.

Tabelle 14: Verteilung der durch das CAD-System gesetzten Markierungen nach ihrer Dignität, bezogen auf die untersuchten Mammee (n=175)

<table>
<thead>
<tr>
<th>Aufteilung gesetzter Marker</th>
<th>Mikrokalzifikationen</th>
<th>Verdichtungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eindeutige Zuweisung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richtig-negativ</td>
<td>144</td>
<td>39</td>
</tr>
<tr>
<td>Falsch-negativ</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Falsch-positiv</td>
<td>24</td>
<td>122</td>
</tr>
<tr>
<td>Richtig-positiv</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aufgetretene Kombinationen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richtig-positiv / Falsch-positiv</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Richtig-positiv / Falsch-negativ</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Falsch-positiv / Falsch-negativ</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Richtig-positiv / Falsch-positiv / Falsch-negativ</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>175</td>
<td>175</td>
</tr>
</tbody>
</table>

Die eindeutige Zuweisung kann bei Mikrokalzifikationen in 173 Fällen (98,8%) und bei Verdichtungen in 168 Fällen (96,0%) getroffen werden. Für diese Teilkollektive ergeben sich die in Tabelle 15 verdeutlichten Sensitivitäten, Spezifitäten sowie positive und negative Vorhersagewerte.
Tabelle 15: Sensitivität, Spezifität, positiver und negativer Vorhersagewert bei Mikrokalzifikationen und Verdichtungen für die Teilkollektive n mit eindeutiger Zuweisung durch das CAD-System

<table>
<thead>
<tr>
<th></th>
<th>Mikroverkalkungen (n=173)</th>
<th>Verdichtungen (n=168)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positiver Vorhersagewert</td>
<td>0,08</td>
<td>0,01</td>
</tr>
<tr>
<td>Negativer Vorhersagewert</td>
<td>0,98</td>
<td>0,89</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>40,0%</td>
<td>28,6%</td>
</tr>
<tr>
<td>Spezifität</td>
<td>85,7%</td>
<td>24,2%</td>
</tr>
</tbody>
</table>

Für die Mammam, in welchen Markerkombinationen auftraten, erfolgte die Beurteilung und Zuordnung mittels Bestimmung des positiven Vorhersagewertes für Markierungen PPV\textsubscript{Mark} der jeweiligen Mamma.

Bei Mikrokalzifikationen und malignen Verdichtungen entstanden so die in Tabelle 16 dargestellten positive Vorhersagewerte.

Tabelle 16: Wert der aufgetretenen positiven Vorhersagewerte PPV\textsubscript{Mark} und Anzahl der hinzukommenden Markerkombinationen für die Mammam mit Markerkombination n

<table>
<thead>
<tr>
<th>Größe des Positiven Vorhersagewert PPV\textsubscript{Mark}</th>
<th>Anzahl der aufgetretenen Markerkombinationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mikroverkalkungen (n=2)</td>
</tr>
<tr>
<td></td>
<td>Verdichtungen (n=7)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0,67</td>
<td>3</td>
</tr>
<tr>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>0,25</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Zum Patientenkollektiv der Mammam mit eindeutigen Zuweisungen wurden die Markerkombinationen hinzugefügt und als richtig-positiv gewertet, deren PPV\textsubscript{Mark} größer oder gleich dem betrachteten PPV\textsubscript{Mark} war. Je kleiner dabei der betrachtete Vorhersagewert war, desto größer war das in die Auswertung einbezogene Patientenkollektiv. So steigt in Abhängigkeit davon bei konstanter Spezifität die Sensitivität, je häufiger neben richtig-positiven Markierungen falsch-
positive Markierungen toleriert werden. Da falsch-negative Markierungen in die oben genannte Gleichung nicht einfließen, wird die bei malignen Mikrokalzifikationen aufgetretene Marker kombination von richtig-positiven und falsch-negativen Werten mit einem $PPV_{\text{Mark}} = 1$ als richtig-positiv eingestuft.

Die Ergebnisse werden in nachfolgenden Tabellen (Tabelle 17, 18) dargestellt.

Tabelle 17: Darstellung von richtig-negativen (RN), falsch-negativen (FN), falsch-positiven (FP), richtig-positiven (RP) Werten und der sich daraus berechnenden Sensitivität für unterschiedliche positive Vorhersagewerte der Markierungen (PPV_{Mark}) für maligne Mikrokalzifikationen mittels CAD-System

<table>
<thead>
<tr>
<th>PPV_{Mark}</th>
<th>RN</th>
<th>FN</th>
<th>FP</th>
<th>RP</th>
<th>Gewertete Mammae</th>
<th>Sensitivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>144</td>
<td>3</td>
<td>24</td>
<td>3</td>
<td>174</td>
<td>50%</td>
</tr>
<tr>
<td>0,5</td>
<td>144</td>
<td>3</td>
<td>24</td>
<td>4</td>
<td>175</td>
<td>57,1%</td>
</tr>
<tr>
<td>0</td>
<td>144</td>
<td>3</td>
<td>24</td>
<td>4</td>
<td>175</td>
<td>57,1%</td>
</tr>
</tbody>
</table>

Tabelle 18: Darstellung von richtig-negativen (RN), falsch-negativen (FN), falsch-positiven (FP), richtig-positiven (RP) Werten und der sich daraus berechnenden Sensitivität für unterschiedliche positive Vorhersagewerte der Markierungen (PPV_{Mark}) bei malignen Verdichtungen mittels CAD-System

<table>
<thead>
<tr>
<th>PPV_{Mark}</th>
<th>RN</th>
<th>FN*</th>
<th>FP</th>
<th>RP</th>
<th>Gewertete Mammae</th>
<th>Sensitivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>39</td>
<td>6</td>
<td>122</td>
<td>2</td>
<td>169</td>
<td>25,0%</td>
</tr>
<tr>
<td>0,67</td>
<td>39</td>
<td>6</td>
<td>122</td>
<td>5</td>
<td>172</td>
<td>45,5%</td>
</tr>
<tr>
<td>0,5</td>
<td>39</td>
<td>6</td>
<td>122</td>
<td>6</td>
<td>173</td>
<td>50,0%</td>
</tr>
<tr>
<td>0,25</td>
<td>39</td>
<td>6</td>
<td>122</td>
<td>8</td>
<td>175</td>
<td>57,1%</td>
</tr>
<tr>
<td>0</td>
<td>39</td>
<td>6</td>
<td>122</td>
<td>8</td>
<td>175</td>
<td>57,1%</td>
</tr>
</tbody>
</table>

(FN* - die Anzahl falsch-negativer Werte setzt sich aus 5 eindeutigen Zuweisungen und einer Marker kombination von falsch-positiven und falsch-negativen Werten zusammen)

Mit sinkendem positiven Vorhersagewert der Markierungen steigt die Sensitivität. Während bei Mikrokalzifikationen nur geringe Sensitivitätsveränderungen
auftreten, ist bei den Verdichtungen eine deutliche Zunahme der Sensitivität bei vermindertem positiven Vorhersagewert PPV_{Mark} nachzuvollziehen. Dies wird in Abbildung 13 veranschaulicht.

Abbildung 13: Darstellung der Sensitivität in Abhängigkeit vom positiven Vorhersagewert der Markierungen in der FROC-Analyse des CAD-Systems

4.5 Erkennung von suspekten Läsionen und Verbesserung der Detektionsrate

Bei den Mikrokalzifikationen wurde durch das CAD-System keine Verbesserung der Detektion erreicht. In 7 Fällen lagen maligne Verkalkungen vor. Der „ImageChecker“ erkannte diese in 4 von 7 Fällen (57,1%).

Bei den malignen Verdichtungen wurden von 15 Karzinomen durch die Befundung des Radiologen in der Mammographie in 14 Fällen (93,3%) Verdichtungen identifiziert. Unter Hinzunahme der Sonographie wurden alle suspekten Verdichtungen identifiziert. Der „ImageChecker“ erkannte 8 (57,1%) der aufgetretenen Karzinome sicher, welche anhand suspekter Verdichtungen auffielen. Insgesamt gelang es dem CAD-System, durch Detektion maligner Mikrokalzifikationen und/oder maligner Verdichtungen 9 der 15 Mammakarzinome zu erkennen.
Das Karzinom, welches mittels Mammographie nicht diagnostiziert werden konnte, wurde auch vom CAD-System nicht erkannt.

4.6 Einbindung des CAD-Systems in klinische Routine und Screeningmammographie

Das CAD-System „ImageChecker M1000“ ließ sich aufgrund seiner einfachen Bedienung und Kompaktheit schnell in die bestehenden Arbeitsabläufe der Mammographie-Einheit einbinden und erreichte eine rasche Akzeptanz bei Arzt und MTRA. Bereits nach kurzer Einlernzeit von etwa 5-7 Arbeitsabläufen arbeiteten die MTRA selbständig und ohne das Auftreten von Fehlern. Dabei wurde der Filmdigitalisierer nahe der Röntgen-Einheit aufgestellt, so dass zusätzliche Wegstrecken von nur etwa 5 Metern anfielen und das Digitalisieren der Mammographien parallel oder in freier Zeit während der klinischen Routine durchgeführt werden konnte. Der nötige Zeitaufwand für das Scannen von 4 Mammographien bei Verwendung eines 18x24cm Filmes dauerte etwa 6-8 Minuten. Der zeitliche Mehraufwand für eine MTRA pro Patientin betrug im Mittel 5 Minuten und wurde durch das Einlegen und die Entnahme der Mammographien am Scanner sowie das Aufhängen der Mammographien am Alternator verursacht. Die Übertragung des digitalisierten Bild vom Scanner zum Anzeigerechner benötigte eine weitere Minute.

und in der Betrachtung und Befundung der Mammographien am Alternator und Monitor und betrug zirka 5 Minuten pro Patientin.
5 Diskussion

5.1 Material und Methoden

Eine Untersuchung zum Einsatz von Computern als zweiten Betrachter könnte aber auch in der Art erfolgen, dass verschiedene Untersucher Mammographien ohne und mit Unterstützung computergestützter Diagnostik betrachten. Eine Studie dieser Art wurde von Funovics und Mitarbeitern mit 3 Radiologen durchgeführt und zeigte, dass die Sensitivität durch den Einsatz des CAD-Systems „ImageChecker M1000“ um bis zu 7,6% verbessert werden kann [107]. Während bei Funovics nur Patientinnen mit Karzinomen untersucht wurden, entspricht das bei uns untersuchte Patientengut dem eines Screeningkollektivs, in welchem die Anzahl an Mammakarzinomen wesentlich geringer ist. Eine Aussage über den Einfluss des CAD-Systems auf die Detektionsrate von
Mammakarzinomen ist bei der Anzahl von 15 Karzinomen in unserer Studiengruppe nur eingeschränkt möglich. Beiden Studien gemeinsam war die hohe Rate an falsch-positiven Werten. Die Anwendung der MR-Mammographie als Kriterium zur Identifikation maligner Läsionen begründet sich wie folgt:

Da Mikrokalzifikationen in der MR-Mammographie nicht dargestellt werden können, wurden alle in die Studie eingeschlossenen Patientinnen im Verlauf kontrolliert, um zu gewährleisten dass sich bei Mammae, welche zur Erstuntersuchung ohne malignen Mikrokalk waren, keine Befundänderung in der Mammographie fand.

5.2 Ergebnisse

Bei der Detektion von Mikrokalzifikationen erreichte das CAD System eine Sensitivität von 57,1%. Von Yarusso wurden in einer Studie mehrere Verfahren, die nach 3 verschiedenen Methoden der Detektion arbeiteten, miteinander verglichen [112]. Diese Methoden waren:

1. die gestreute räumliche Verteilung der einzelnen Mikrokalzifikationen
2. die zentralisierte Verteilung von Verkalkungen
3. Kombination beider Kriterien

Die hier erreichten Sensitivitäten lagen zwischen 56 und 97%. Im Allgemeinen wurden durch Verfahren mit dem Schwerpunkt einer zentralisierten Verteilung bessere Ergebnisse erzielt [112]. Betrachtet man das CAD-System hinsichtlich seiner Detektionsrate, so hätte man erwartet, dass dieses als ein Verfahren, welches für die Analyse der Mammographien die Kombination beider Methoden verwendet, eine hohe Sensitivität im Vergleich zu den von Yarusso erzielten Resultaten erreicht.

Eine Arbeitsgruppe um Nakahara, der mit dem CAD-System „ImageChecker M1000“ ein Screeningkollektiv von 65 Patientinnen mit insgesamt 260 Mammographien untersuchte, erreichte bei der Detektion von Mikrokalk eine Sensitivität von 100% [113]. Vergleicht man diesen Wert mit der in unserer Studie erzielten Sensitivität, so sollte dies auch immer im Hinblick auf die Anzahl falsch-positiver Markierungen erfolgen. Während an unserem Institut die Anzahl falsch-positiver Mikrokalzifikationen pro Bild 0,12 betrug, wurde bei Nakahara
und Mitarbeitern die hohe Sensitivität bei 0,58 falsch-positiven Mikrokalzifikationen pro Bild erzielt [113].

Auffällig war die hohe Rate falsch-negativer Befunde (40%) durch das CAD-System. Der „ImageChecker M1000“ fand in 6 der 15 Karzinome keinen Anhalt für Malignität und war damit zur Diagnosefindung nicht nützlich. Der Unterschied im Vergleich zu den Ergebnissen der Mammographie und MR-Mammographie war nach Durchführung der statistischen Evaluierung signifikant (p=0,037). Ein ähnliches Ergebnis lieferte eine Arbeit von Roehrig und Mitarbeitern, welche jedoch an einem Screeningkollektiv auch zeigen konnte, dass der Einsatz von CAD-Systemen die Sensitivität gerade im Anteil falsch-positiver Befunde signifikant verbessern kann [114].

Bei den gesunden Mammae erfolgte durch das CAD-System nur in 25 % der Fälle die Zuordnung zu richtig-negativen Befunden. Damit wurden 75% der 160 in dieser Gruppe vertretenen Mammae als suspekte Befunde und damit als „falsch-positiv“ eingestuft. Dieses Ergebnis kann im Vergleich zu Mammographie und MR-Mammographie als statistisch hochsignifikant eingeschätzt werden (p<0,001). Damit sind für eine Gruppe gesunder Mammae zu viele Befunde falsch eingestuft wurden, zumal durch Mammographie, MRT und MRT/Biopsie die Zahl suspekter (falsch-positiver) Befunde zwischen 0 und 10,6% lag.

5.2.1 Analyse der Systemdaten der Malignomdetektion anhand von Mikrokalzifikationen und Verdichtungen

Diskussion

sollte. Eine Begrenzung ist hier durch die Leistungsfähigkeit der verwendeten Computersysteme gegeben und wird sich mit deren Verbesserung steigern lassen.

Erstaunlich und nicht den Kriterien des Herstellers entsprechend war, dass das CAD-System das Karzinom mit einer Größe ≤ 0,5 Zentimeter sowohl anhand von Mikrokalk als auch vorliegender Verdichtung markierte. Ob dies ein Zufallsbefund ist oder ob das CAD-System bei der Detektion solcher Befunde besser ist als vom Hersteller beschrieben, bleibt offen.

Die bei uns recht kleine Anzahl von Karzinomen (n=15) erlaubte nur einen eingeschränkten Vergleich mit anderen Studien, in welchen ein wesentlich höherer Anteil von Krebspatienten vorhanden ist. Dies ist bei der Detektion eine Erklärung für die vergleichsweise geringe Sensitivität (60%) bei einer falsch-positiven Rate von 0,67 Markierungen pro Bild. Nakahara und Mitarbeiter konnten an 65 Patientinnen bei 260 Mammographien 79% aller Brustkrebsfälle detektieren [113]. Die Rate falsch-positiver Markierungen pro Film betrug in dieser Studie 0,7 [113]. Da bei beiden Arbeiten das CAD-System „ImageChecker M1000“ verwendet wurde, ist die Diskrepanz zwischen beiden Studienergebnissen erstaunlich, kann aber durch unterschiedliche Systemeinstellungen bei unterschiedlichem Software-Entwicklungsstand und durch die vergleichsweise kleine Gruppe von Malignomen in der vorliegenden Untersuchung erklärt werden.

Bei der Markierung von malignen Läsionen, welche mit Mikrokalkzifikationen einhergingen, wurden 4 der 7 Malignome vom System korrekt markiert. Die damit errechnete Sensitivität von 57,1% liegt deutlich unter der anderer Autoren [69] [115]. Sittek und Mitarbeiter beschreiben für die Detektion des Mammarkarzinoms anhand von Mikrokalkzifikationen Erkennungsraten bis 100% [117]. Doi und seine Mitarbeiter erreichten Sensitivitäten von etwa 85%. Die Anzahl falsch-positiver Werte beträgt dabei etwa 0,5 Marker pro Aufnahme [115]. Bei der Detektion mittels CAD-System „ImageChecker M1000“ wurde die oben errechnete Sensitivität bei einer Anzahl von 0,12 falsch-positiven Mikrokalkzifikationen pro Aufnahme erlangt. Dies verdeutlicht, wie wichtig eine Korrelation zu falsch-positiven Markern ist, wenn Ergebnisse verschiedener Arbeitsgruppen miteinander verglichen werden sollen und zeigt, dass die Rate, der durch den
Diskussion

ist zur Reduktion falsch-positiver Werte nötig, ohne dass dabei die Anzahl falsch-
negativer Werte gesteigert wird.

Dass die Darstellung detektiertener Mikroverkalkungen und Verdichtungen nicht in
ejedem Fall in beiden Ebenen erfolgte, ist nicht verwunderlich. Hier spielen
Überlagerungseffekte eine Rolle, welche suspekte Regionen verdecken können.
Sicherlich wäre es sinnvoll, wenn man eine voneinander abhängige und sich
gegenseitig unterstützende Texturanalyse unter Berücksichtigung eines 3D-
Modells von medio-lateraler und kranio-kaudaler Aufnahme zur Verfügung hätte.
So könnten Überlagerungseffekte durch die jeweils andere Aufnahme noch
während der CAD-Analyse berücksichtigt werden und eine Senkung falsch-
positiver und falsch-negativer Markierungen erreicht werden.

Für die fehlende und fehlerhafte Darstellung von Läsionen kommen mehrere
Gründe in Frage. So muss davon ausgegangen werden, dass eine mangelnde
Bildqualität die Detektion beeinflussen kann und Läsionen deshalb nicht vom
CAD-System markiert wurden. Hier muss untersucht werden, ob eine
verbesserte Bildqualität die eventuell nötige Erweiterung des Bildspeichers und
die damit verbundenen Kosten rechtfertigt. Genauso können Artefakte (Staub,
Kratzspuren) suspekte Läsionen imitieren und vom System markiert werden.
Dies kam bei der Detektion von Mikrokalkzifikationen in unserer Studie in 4 Fällen
vor. Abhilfe könnten hier primär digitale Filmsysteme schaffen, bei welchen auf
Mammographien der herkömmlichen Filmfolientechnik verzichtet wird. Auch
Einflüsse während des Scan-Vorganges von Mammographien würden dadurch
beseitigt. Obenauer und Mitarbeiter zeigten in einer Studie aus dem Jahre 2000,
 dass die digitale Vollfeldmammographie trotz geringerer Ortsauflösung in der
Detektion von Mikrokalk der konventionellen Film-Folie-Mammographie
gleichwertig beziehungsweise in der Vergrößerung bereits überlegen ist [116].

5.2.2 ROC/ FROC

Um die Ergebnisse des CAD-Systems einzuschätzen und mit anderen Systemen
vergleichen zu können, ist es nötig, statistische Größen wie Sensitivität und
Diskussion

Spezifität, positiven und negativen Vorhersagewert eines diagnostischen Verfahrens zu bestimmen.

Die Betrachtung und Auswertung im Sinne einer ROC-Analyse („receiver operating characteristics“) erlaubt einen ersten Vergleich mit bereits etablierten Verfahren.

Eine weitere Studie mit einem Screeningkollektiv, welches aus 4148 Mammographien bestand und 267 histologisch gesicherte Karzinome enthielt, wurde von Nawano und Mitarbeitern untersucht [120]. Hier wurde das Karzinom in 89,9% durch das CAD-System richtig erkannt. Die Rate falsch-positiver Markierungen pro Aufnahme lag mit 1,35 deutlich über der von uns erreichten [120].

Dass die Sensitivitäten bei der Detektion von malignen Verdichtungen und Mikrokalzifikationen in unserer Studie nahezu gleich sind, entspricht nicht den Ergebnissen anderer Studien. Auch hier muss wieder darauf hingewiesen werden, dass dann eine Unterscheidung zwischen benignen und malignen Mikrokalzifikationen nicht durchgeführt wurde [120, 115]. In der Regel gestaltet sich die Detektion von malignen Verdichtungen ungleich schwieriger, da die Texturanalyse szirrhöser Massen mit dichtem Zentrum und radiär zum Zentrum verlaufenden Linien aufwendiger ist [69, 121]. Erreichte man bei der Detektion von malignen Massen im Vergleich zu Mikrokalzifikationen eine höhere Sensitivität, war dies mit einer ungleichen Erhöhung der falsch-positiven Markierungen verbunden [115].
In FROC-Analysen („free-response receiver operating characteristics“) gilt eine Läsion nur dann als detektiert, wenn der Ort der Markierung mit dem Ort der Läsion übereinstimmt. Die Notwendigkeit für deren Einsatz in der Auswertung und Beurteilung von Methoden in der Mammographie wurde von Compagnone und Mitarbeitern in einer Arbeit von 1999 untersucht und zeigt, dass die drei untersuchten Techniken der FROC-Analyse (FROC, AFROC, FFE) gleichwertige Ergebnisse für die Beurteilbarkeit liefern [122].

Die meisten der in unserer Studie untersuchten Mammographien waren eindeutig zuzuordnen (Mikrokalzifikationen: 98,8%, Verdichtungen: 96%). Für diese Kollektive waren die statistischen Größen Sensitivität, Spezifität, positiver und negativer Vorhersagewert eindeutig bestimmbar. Die Fälle, in denen Kombinationen von Markierungen vorlagen, blieben unberücksichtigt. Um diese Fälle in die Auswertung aufnehmen zu können, wurde für die gesetzten Markierungen der positive Vorhersagewert \(\text{PPV}_{\text{Mark}} \) berechnet. Je nach Wert des errechneten positiven Vorhersagewertes änderte sich die Anzahl der Mammmae, welche in die Bewertung einbezogen wurden. Aufgrund dieser sich ändernden Anzahl variierte auch die jeweilige Sensitivität.

Für Mikrokalzifikationen betrug die Sensitivität 50,0% bei einem \(\text{PPV}_{\text{Mark}} \) von 1,0. Ab einem \(\text{PPV}_{\text{Mark}} \) von 0,5 wurden alle 175 Mammmae mit Verlaufskontrolle in die Auswertung einbezogen, wodurch sich die Sensitivität auf 57,1 Prozent steigern ließ. Die Anzahl falsch-positiver Markierungen pro Bild betrug bei dieser Sensitivität 0,12. Diese niedrige Anzahl falsch-positiver Werte ist mit einer vergleichsweise geringen Sensitivität verbunden. Andere Studien, die auch im Sinne einer FROC-Analyse bewertet wurden, zeigen hier Sensitivitäten von 90 Prozent bei 0,5 falsch-positiven Werten pro Bild [123] und 84 Prozent bei 1,0 falsch-positiven Markierungen pro Bild [124].

Bei den Verdichtungen wurde bei einem \(\text{PPV}_{\text{Mark}} \) von 1,0 nur jede vierte Läsion detektiert. Das entspricht einer Sensitivität von 25%. Diese ließ sich unter Einbeziehung der Mammmae mit Markerkombinationen abhängig vom betrachteten positiven Vorhersagewert auf 57,1% steigern. Hier wurden 0,69 falsch-positive Markierungen pro Aufnahme durch das CAD-System „ImageChecker M1000“ gesetzt. Gleiche Ergebnisse lieferten Arbeiten über die
Auswertung der Detektion von malignen Verdichtungen einer Arbeitsgruppe um Bick aus dem Jahr 1996 [105].

5.3 Eingliederung in die Screeningmammographie

Für die Einführung von CAD-Systemen in die Routinediagnostik der Mammographie ist neben einer Validierung des Systems sowie einer Kosten-Nutzen-Analyse auch die Eingliederung in die bestehenden organisatorischen
Diskussion

Der Filmdigitalisierer wurde in unserer Einrichtung so platziert, dass es der MTRA möglich war, während des gewohnten klinischen Alltags die Mammographien der an der Studie teilnehmenden Frauen zu scannen. Schon nach kurzer Einlern- und Trainingsphase geschah dies frei von Bedienungsfehlern. Monitore und Alternator sollten sich am Untersuchungsplatz des Radiologen oder dessen Umgebung befinden. Diese Anlage des CAD-Systems bewährte sich und ist auch in ähnlicher Art und Weise von anderen Arbeitsgruppen beschrieben [69].

In der Mammographie-Sprechstunde unserer Einrichtung erfolgten Anamnese, manuelle Untersuchung der Brust, Mammographie und gegebenenfalls die Durchführung einer Sonographie einzeitig, das heißt, obengenannte Untersuchungen wurden während des gleichen Vorstellungstermines der Patientin durchgeführt und die erhobenen Befunde der Patientin sofort mitgeteilt. War die Durchführung einer MR-Mammographie nötig, so wurde diese zu frühest möglichem Zeitpunkt durchgeführt und die Patientinnen fanden sich bei Vorliegen des Befundes wieder in der Mammographie-Sprechstunde ein.

Der Einbau der CAD-Analyse in die tägliche Routine verlängerte den nötigen Zeitaufwand durch das Scannen der Mammographien um 6-8 Minuten. Für den Vergleich zwischen originalen und digitalisierten Mammographien durch den Radiologen waren weitere 5 Minuten einzuplanen, so dass sich die Wartebeziehungsweise Behandlungszeit der Patientinnen um etwa 11-13 Minuten

Unsere Erfahrungen bestätigten, dass eine Einbindung des CAD-Systems „ImageChecker M1000“ in die bereits bestehende Mammographieeinheit durchgeführt werden kann. Um die Effizienz einer Screeningmammographie zu erhöhen, sollte jedoch die Umstrukturierung vorhandener Handlungsabläufe unterstützt werden.
Zusammenfassung

6 Zusammenfassung

In der vorliegenden Arbeit wurde das System „ImageChecker M1000“ und seine Komponenten der Firma „R2 Technologies“, Los Altos, Kalifornien, USA bezüglich der Detektion karzinomverdächtiger Strukturen in der Mammographie untersucht.

Hierzu wurde bei 100 Patientinnen im Zeitraum von Juli 1997 bis Januar 1998 eine Screening-Mammographie in zwei Ebenen sowie eine Ultraschalluntersuchung und eine MR-Mammographie der Brust durchgeführt. Bei karzinomverdächtigen Befunden erfolgte die Erhebung eines histopathologischen Befundes. Dies geschah in 24 Fällen (66,7%) aufgrund eines suspekten MRT-Befundes und in 12 Fällen (33,3%) infolge eines Karzinomverdacht es in der Mammographie. Es konnte so bei 14 Patientinnen ein Mammakarzinom nachgewiesen werden, wobei in einem Fall ein bilateraler Tumorbefall bestand. Durch das CAD-System „ImageChecker M1000“ wurden 9 der insgesamt 15 vorkommenden Karzinome detektiert (60%). Dies geschah in einem Fall (11,1%) anhand suspekter Mikrokalkzifikationen, in 5 Fällen (55,6%) aufgrund sternförmiger Parenchymverdichtungen und in 3 Fällen (33,3%) durch Auftreten beider Merkmale. 5 der 6 nicht erkannten Karzinome wiesen dabei keinen Mikrokalk auf. In der Gruppe der Mammae mit Karzinom konnte durch den Einsatz des CAD-Systems weder bei Mikrokalkzifikationen noch bei malignen Verdichtungen eine Verbesserung der Detektionsrate erzielt werden.

In den 350 ausgewerteten Mammographien mit Verlaufskontrolle wurden 55 Mikrokalkzifikationen (0,16 Marker/ Bild) markiert. 25,5% dieser Markierungen waren korrekt. Bei den Verdichtungen markierte das CAD-System 258 Verdichtungen (0,74 Marker/ Bild). Die Anzahl korrekter Marker betrug hier nur 5,4%. Die Anzahl falsch-positiver Markierungen pro Aufnahme betrug bei Mikrokalkzifikationen 0,12 und bei Verdichtungen 0,69.

In der ROC-Analyse ergab sich für die Detektion von malignen Mikrokalkzifikationen eine Sensitivität von 57,1% bei einer Spezifität von 85,7%. Bei den Verdichtungen betrug die Sensitivität 64,3% bei einer Spezifität von 24,2%.
In der FROC-Analyse ließ sich für die Teilkollektive mit eindeutiger Zuweisung der Markierungen bei Kalzifikationen eine Sensitivität von 40,0% und eine Spezifität von 85,7% berechnen. Bei den Verdichtungen ergab sich eine Sensitivität von 28,6% bei einer Spezifität von 24,2% in der Gruppe der eindeutigen Zuweisungen. Unter Hinzunahme der Markerkooperationen nach Bestimmung des positiven Vorhersagewertes ließ sich die Sensitivität bei Mikrokalk und Verdichtungen auf 57,1% steigern.

Literaturverzeichnis

37. Blanks, R.G., M.G. Wallis, and R.M. Given Wilson, Observer variability in cancer detection during routine repeat (incident) mammographic screening

Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass mir die Promotionsordnung der Medizinischen Fakultät der Friedrich-Schiller-Universität bekannt ist,

ich die Dissertation selbst angefertigt habe und alle von mir benutzten Hilfsmittel, persönliche Mitteilungen und Quellen in meiner Arbeit angegeben sind,

mich folgende Personen bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskriptes unterstützt haben: Dr. med. A. Hochmuth, Dr. med. A. Malich, Prof. Dr. med. W.A. Kaiser,

die Hilfe eines Promotionsberaters nicht in Anspruch genommen wurde und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen,

dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht habe und

dass ich die gleiche, eine in wesentlichen Teilen ähnliche oder eine andere Abhandlung nicht bei einer anderen Hochschule als Dissertation eingereicht habe.

Jena, im Juni 2002

K a r s t e n K o c h
Lebenslauf

Persönliches:
Karsten Koch
geboren am 12. September 1971 in Pößneck
ledig, keine Kinder
wohnhalt in D-07749 Jena, Hausbergstrasse 30

Ausbildung:
09/1978-08/1988 Polytechnische Oberschule
09/1988-08/1990 Gymnasium
07/1990 Abitur
11/1992-03/2000 Medizinstudium an der Friedrich-Schiller-Universität Jena
12/1999 Medizin III. Staatsexamen

Tätigkeiten:
09/1990-12/1991 Zivildienst im Kreiskrankenhaus Pößneck, Innere Abteilung Ranis
01/1992-10/1992 Rettungshelfer im Krankentransport/ Rettungsdienst im DRK Pößneck

Ärztliche Tätigkeit: seit 04/2000 HNO-Klinik der Friedrich-Schiller-Universität Jena

Promotion: seit 09/1997 „Computerassistierte Diagnostik (CAD) in der Mammographie- Prospektive Studie zum Diagnostischen Potential im Vergleich zur Mammographie/ MR-Mammographie“ bei Professor Dr. med. W. A. Kaiser, Friedrich-Schiller-Universität Jena

Jena, im Juni 2002
Karsten Koch
Danksagung

Mein herzlicher Dank für das Gelingen meiner Arbeit gilt:

- Herrn Prof. Dr. Kaiser für die Vergabe des Themas dieser Promotion, für seine freundliche Unterstützung, insbesondere die großzügige Hilfe, die mir durch die uneingeschränkte Nutzung der technischen Geräte und der erforderlichen Materialien in einer Klinik zuteil wurde.

- Meinen unmittelbaren wissenschaftlichen Betreuern, Herrn Dr. Hochmuth und Herrn Dr. Malich, für Ihre Hilfsbereitschaft und große Geduld bei allen wissenschaftlichen Fragen und Diskussionen. Ihr Interesse und ihre Unterstützung trugen wesentlich zum Gelingen dieser Arbeit bei.

- Herrn Prof. Dr. Schneider und den Mitarbeitern der Klinik für Frauenheilkunde und Geburtshilfe für die gute Kooperation und die Möglichkeit der Einsicht von Krankenakten.

- Herrn Dr. Vollandt vom Institut für Medizinische Statistik für die Hilfestellung und Beratung bei der statistischen Auswertung.

- Den medizinisch-technischen Assistentinnen der Abteilung für Mammographie, insbesondere Frau Uhlmann, für ihre tatkräftige Unterstützung während der Erhebung und Auswertung der Studiendaten.

- Meinen Eltern und Freunden für das mir entgegen gebrachte Vertrauen sowie die geistige und moralische Unterstützung.

Karsten Koch